Towards lightweight satisfiability solvers for self-verification

Fritjof Bornebusch, R. Wille, R. Drechsler
{"title":"Towards lightweight satisfiability solvers for self-verification","authors":"Fritjof Bornebusch, R. Wille, R. Drechsler","doi":"10.1109/ISED.2017.8303924","DOIUrl":null,"url":null,"abstract":"Solvers for Boolean satisfiability (SAT solvers) are essential for various hardware and software verification tasks such as equivalence checking, property checking, coverage analysis, etc. Nevertheless, despite the fact that very powerful solvers have been developed in the recent decades, this progress often still cannot cope with the exponentially increasing complexity of those verification tasks. As a consequence, researchers and engineers are investigating complementarily different verification approaches which require changes in the core methods as well. Self-verification is such a promising approach where e.g. SAT solvers have to be executed on the system itself. This comes with hardware restrictions such as limited memory and motivates lightweight SAT solvers. This work provides a case study towards the development of such solvers. To this end, we consider several core techniques of SAT solvers (such as clause learning, Boolean constraint propagation, etc.) and discuss as well as evaluate how they contribute to both, the run-time performance but also the required memory requirements. The findings from this case study provide a basis for the development of dedicated, i.e. lightweight, SAT solvers to be used in self-verification solutions.","PeriodicalId":147019,"journal":{"name":"2017 7th International Symposium on Embedded Computing and System Design (ISED)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th International Symposium on Embedded Computing and System Design (ISED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISED.2017.8303924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Solvers for Boolean satisfiability (SAT solvers) are essential for various hardware and software verification tasks such as equivalence checking, property checking, coverage analysis, etc. Nevertheless, despite the fact that very powerful solvers have been developed in the recent decades, this progress often still cannot cope with the exponentially increasing complexity of those verification tasks. As a consequence, researchers and engineers are investigating complementarily different verification approaches which require changes in the core methods as well. Self-verification is such a promising approach where e.g. SAT solvers have to be executed on the system itself. This comes with hardware restrictions such as limited memory and motivates lightweight SAT solvers. This work provides a case study towards the development of such solvers. To this end, we consider several core techniques of SAT solvers (such as clause learning, Boolean constraint propagation, etc.) and discuss as well as evaluate how they contribute to both, the run-time performance but also the required memory requirements. The findings from this case study provide a basis for the development of dedicated, i.e. lightweight, SAT solvers to be used in self-verification solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向自我验证的轻量级满意度求解器
布尔可满足性求解器(SAT求解器)对于各种硬件和软件验证任务(如等价性检查、属性检查、覆盖率分析等)是必不可少的。然而,尽管近几十年来研制出了非常强大的求解器,但这一进展往往仍然无法应付这些核查任务以指数方式增加的复杂性。因此,研究人员和工程师正在研究互补的不同验证方法,这些方法也需要对核心方法进行更改。自我验证是一种很有前途的方法,例如SAT求解器必须在系统本身上执行。这带来了硬件限制,比如有限的内存,并激发了轻量级的SAT求解器。这项工作为此类求解器的开发提供了一个案例研究。为此,我们考虑了SAT求解器的几种核心技术(如子句学习、布尔约束传播等),并讨论和评估了它们对运行时性能和所需内存需求的贡献。本案例研究的结果为开发专用的,即轻量级的,用于自我验证解决方案的SAT求解器提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OTORNoC: Optical tree of rings network on chip for 1000 core systems A new memory scheduling policy for real time systems All optical design of cost efficient multiplier circuit using terahertz optical asymmetric demultiplexer Application of variational mode decomposition and ABC optimized DAG-SVM in arrhythmia analysis An empirical study on performance of branch predictors with varying storage budgets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1