Detection Performance Analysis based on EEG Signal for Visual BCI

Kibae Lee, Ghun Hyeok Ko, C. Lee, Yoon-Sang Jeong
{"title":"Detection Performance Analysis based on EEG Signal for Visual BCI","authors":"Kibae Lee, Ghun Hyeok Ko, C. Lee, Yoon-Sang Jeong","doi":"10.1109/ICEIC57457.2023.10049806","DOIUrl":null,"url":null,"abstract":"The brain computer interfaces (BCIs) offer a possibility of communication for people with computer. Event related potential (ERP) and steady-state visual evoked potential (SSVEP) studies using simple images were mainly conducted to observe brain response characteristics to visual stimuli. In this paper, we present a Visual BCI dataset according to the presence or absence of a target in a still image and analyze the performance of various feature extraction and classification algorithms. Throughout various experiments, the proposed variance and mean ratio (VMR) based on Takens' delay embedding showed the best average accuracy from 69.23 to 76.40%.","PeriodicalId":373752,"journal":{"name":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC57457.2023.10049806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The brain computer interfaces (BCIs) offer a possibility of communication for people with computer. Event related potential (ERP) and steady-state visual evoked potential (SSVEP) studies using simple images were mainly conducted to observe brain response characteristics to visual stimuli. In this paper, we present a Visual BCI dataset according to the presence or absence of a target in a still image and analyze the performance of various feature extraction and classification algorithms. Throughout various experiments, the proposed variance and mean ratio (VMR) based on Takens' delay embedding showed the best average accuracy from 69.23 to 76.40%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于脑电信号的视觉脑机接口检测性能分析
脑机接口(bci)为人与计算机的交流提供了可能。事件相关电位(Event related potential, ERP)和稳态视觉诱发电位(steady-state visual evoked potential, SSVEP)研究主要通过简单图像来观察大脑对视觉刺激的反应特征。在本文中,我们根据静止图像中目标的存在或不存在,给出了一个Visual BCI数据集,并分析了各种特征提取和分类算法的性能。在各种实验中,基于Takens延迟嵌入的方差均值比(VMR)的平均准确率在69.23 ~ 76.40%之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DWT+DWT: Deep Learning Domain Generalization Techniques Using Discrete Wavelet Transform with Deep Whitening Transform Fast Virtual Keyboard Typing Using Vowel Hand Gesture Recognition A Study on Edge Computing-Based Microservices Architecture Supporting IoT Device Management and Artificial Intelligence Inference Efficient Pavement Crack Detection in Drone Images using Deep Neural Networks High Performance 3.3KV 4H-SiC MOSFET with a Floating Island and Hetero Junction Diode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1