Urban UAV Images Semantic Segmentation Based on Fully Convolutional Networks with Digital Surface Models

Bowen Zhang, Y. Kong, H. Leung, Shiyu Xing
{"title":"Urban UAV Images Semantic Segmentation Based on Fully Convolutional Networks with Digital Surface Models","authors":"Bowen Zhang, Y. Kong, H. Leung, Shiyu Xing","doi":"10.1109/ICICIP47338.2019.9012207","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicles (UAV) have had significant progress in the last decade, applying to many fields for its convenience to explore areas that men cannot reach and the progress of image processing. Still, as basis to further application, semantic image segmentation is one of the most difficult challenges. In this paper, we propose a method for urban UAV images semantic segmentation, utilizing the geographical information, digital surface models (DSM). We introduce an end-to-end, dual stream fully convolutional networks (FCN) based classifier with DSMs to get the segmentation results, which utilizes the proposed fusion decision strategy instead of the pixel-level classification strategy, along with a short-cut scheme. The experiments show that the proposed structure performs better than state-of-the-art networks in multiple metrics.","PeriodicalId":431872,"journal":{"name":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP47338.2019.9012207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Unmanned aerial vehicles (UAV) have had significant progress in the last decade, applying to many fields for its convenience to explore areas that men cannot reach and the progress of image processing. Still, as basis to further application, semantic image segmentation is one of the most difficult challenges. In this paper, we propose a method for urban UAV images semantic segmentation, utilizing the geographical information, digital surface models (DSM). We introduce an end-to-end, dual stream fully convolutional networks (FCN) based classifier with DSMs to get the segmentation results, which utilizes the proposed fusion decision strategy instead of the pixel-level classification strategy, along with a short-cut scheme. The experiments show that the proposed structure performs better than state-of-the-art networks in multiple metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数字曲面模型的全卷积网络城市无人机图像语义分割
无人机(UAV)在过去的十年中取得了重大进展,由于其方便探索人类无法到达的领域和图像处理的进步,应用于许多领域。然而,作为进一步应用的基础,语义图像分割是最困难的挑战之一。本文提出了一种利用地理信息、数字地面模型(DSM)对城市无人机图像进行语义分割的方法。我们引入了一种端到端、双流全卷积网络(FCN)分类器,该分类器利用所提出的融合决策策略代替像素级分类策略,并采用了一种捷径方案来获得分割结果。实验表明,该结构在多个指标上都优于当前最先进的网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mobile Robot Autonomous Exploration and Navigation in Large-scale Indoor Environments Cross Spectral-Spatial Convolutional Network for Hyperspectral Image Classification Sparse Coding with Outliers A Novel Fuzzy Logic Control on the FVVT Lift of Internal Combustion Engine Adaptive Fuzzy Compensation Control of MIMO Stochastic Nonlinear Systems with Input Hysteresis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1