IRIS-BLAS: Towards a Performance Portable and Heterogeneous BLAS Library

Narasinga Rao Miniskar, Mohammad Alaul Haque Monil, Pedro Valero-Lara, Frank Liu, J. Vetter
{"title":"IRIS-BLAS: Towards a Performance Portable and Heterogeneous BLAS Library","authors":"Narasinga Rao Miniskar, Mohammad Alaul Haque Monil, Pedro Valero-Lara, Frank Liu, J. Vetter","doi":"10.1109/HiPC56025.2022.00042","DOIUrl":null,"url":null,"abstract":"This paper presents IRIS-BLAS, a novel heterogeneous and performance portable BLAS library. IRIS-BLAS is built on top of the IRIS runtime and multiple vendor and open-source BLAS libraries. It can transparently use all the architectures/devices available in a heterogeneous system, using the appropriate BLAS library based on the task mapping at run time. Thus, IRIS-BLAS is portable across a broad spectrum of architectures and BLAS libraries, alleviating the worry of application developers about modifying the application source code. Even though the emphasis is on portability, IRIS-BLAS provides competitive or even better performance than other state-of-the-art references. Moreover, IRIS-BLAS offers new features such as efficiently using extremely heterogeneous systems composed of multiple GPUs from different hardware vendors.","PeriodicalId":119363,"journal":{"name":"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC56025.2022.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents IRIS-BLAS, a novel heterogeneous and performance portable BLAS library. IRIS-BLAS is built on top of the IRIS runtime and multiple vendor and open-source BLAS libraries. It can transparently use all the architectures/devices available in a heterogeneous system, using the appropriate BLAS library based on the task mapping at run time. Thus, IRIS-BLAS is portable across a broad spectrum of architectures and BLAS libraries, alleviating the worry of application developers about modifying the application source code. Even though the emphasis is on portability, IRIS-BLAS provides competitive or even better performance than other state-of-the-art references. Moreover, IRIS-BLAS offers new features such as efficiently using extremely heterogeneous systems composed of multiple GPUs from different hardware vendors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IRIS-BLAS:迈向性能可移植和异构的BLAS库
IRIS-BLAS是一种新型的异构、高性能便携式BLAS库。IRIS-BLAS建立在IRIS运行时和多个供应商和开源的BLAS库之上。它可以透明地使用异构系统中可用的所有体系结构/设备,在运行时使用基于任务映射的适当BLAS库。因此,IRIS-BLAS可以在广泛的体系结构和BLAS库之间移植,减轻了应用程序开发人员对修改应用程序源代码的担忧。尽管重点是便携性,但IRIS-BLAS提供了比其他最先进的参考产品更具竞争力甚至更好的性能。此外,IRIS-BLAS还提供了一些新功能,例如有效地使用由来自不同硬件供应商的多个gpu组成的极端异构系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HiPC 2022 Technical Program Committee A Deep Learning-Based In Situ Analysis Framework for Tropical Cyclogenesis Prediction COMPROF and COMPLACE: Shared-Memory Communication Profiling and Automated Thread Placement via Dynamic Binary Instrumentation Message from the HiPC 2022 General Co-Chairs Efficient Personalized and Non-Personalized Alltoall Communication for Modern Multi-HCA GPU-Based Clusters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1