Simulation-based approach for fabrication of micro-shell resonators with controllable stiffness and mass distribution

B. Shiari, T. Nagourney, Sajal Singh, J. Cho, K. Najafi
{"title":"Simulation-based approach for fabrication of micro-shell resonators with controllable stiffness and mass distribution","authors":"B. Shiari, T. Nagourney, Sajal Singh, J. Cho, K. Najafi","doi":"10.1109/ISISS.2018.8358146","DOIUrl":null,"url":null,"abstract":"This paper presents a precision shell integrating (PSI) gyroscope design and fabrication based on an upfront simulation of a modified micro-blowtorching technique. The PSI resonator is designed to achieve low frequency n = 2 wine-glass mode and high parasitic mode frequencies to improve shock and vibration tolerance. The resonator has also larger effective mass than other MEMS gyroscope resonator designs. A non-isothermal model is developed to simulate reflow molding dynamics and solve the key challenge of PSI resonator fabrication, which is designing a patterned substrate geometry whose various regions stretch to the desired final thickness and land at the appropriate locations along a graphite mold. Our upfront process simulation model saves significant cost and time by eliminating the trial-and-error approach to fabricating PSI resonators with the desired mass and stiffness distribution.","PeriodicalId":237642,"journal":{"name":"2018 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISISS.2018.8358146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a precision shell integrating (PSI) gyroscope design and fabrication based on an upfront simulation of a modified micro-blowtorching technique. The PSI resonator is designed to achieve low frequency n = 2 wine-glass mode and high parasitic mode frequencies to improve shock and vibration tolerance. The resonator has also larger effective mass than other MEMS gyroscope resonator designs. A non-isothermal model is developed to simulate reflow molding dynamics and solve the key challenge of PSI resonator fabrication, which is designing a patterned substrate geometry whose various regions stretch to the desired final thickness and land at the appropriate locations along a graphite mold. Our upfront process simulation model saves significant cost and time by eliminating the trial-and-error approach to fabricating PSI resonators with the desired mass and stiffness distribution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于仿真的刚度和质量分布可控微壳谐振器制造方法
本文介绍了一种基于改进微喷灯技术的精密壳体集成陀螺仪的设计与制造。PSI谐振器设计用于实现低频n = 2酒杯模式和高寄生模式频率,以提高冲击和振动耐受性。与其他MEMS陀螺仪谐振器相比,该谐振器具有更大的有效质量。开发了一个非等温模型来模拟回流成型动力学,并解决了PSI谐振器制造的关键挑战,即设计一种图案基板几何形状,其各个区域延伸到所需的最终厚度,并沿着石墨模具落在适当的位置。我们的前期工艺仿真模型通过消除制造具有所需质量和刚度分布的PSI谐振器的试错方法,节省了大量的成本和时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lateral diffusion doping of silicon for temperature compensation of MEMS resonators A 27μW MEMS silicon oscillating accelerometer with bias instability and 10-μg/√Hz noise floor High-precision inertial measurement unit IMU-5000 Human activity recognition method based on inertial sensor and barometer Resonance frequency control and digital correction for capacitive MEMS gyroscopes within electromechanical bandpass delta-sigma-modulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1