Heart Murmur Detection Using Ensemble of Deep Learning Classifiers for Phonocardiograms Recorded from Multiple Auscultation Locations

S. Parvaneh, Zaniar Ardalan, Joomyung Song, Kathan Vyas, C. Potes
{"title":"Heart Murmur Detection Using Ensemble of Deep Learning Classifiers for Phonocardiograms Recorded from Multiple Auscultation Locations","authors":"S. Parvaneh, Zaniar Ardalan, Joomyung Song, Kathan Vyas, C. Potes","doi":"10.22489/CinC.2022.241","DOIUrl":null,"url":null,"abstract":"A digital phonocardiogram (PCG) provides an opportunity for automated screening in resource-constrained environments. As part of the George B. Moody PhysioNet Challenge 2022, our team, Life_Is _Now, developed a computational approach using an ensemble of deep learning classifiers for identifying abnormal cardiac function from PCG. A stratified 5-fold cross-validation was used for model development and evaluation for murmur and clinical outcome identification. The backbone of our trained classifiers is a modified pre-trained deep convolutional neural network on AudioSet-Youtube corpus (YAMNet) and transfer learning. The YAMNet model is modified and finetuned on the publicly available PhysioNet dataset. Our murmur and clinical outcome classifiers received a weighted accuracy score of 0.831 and a Challenge cost score of 14,850 from cross-validation on the public training set. Our murmur scores were 0.678 and outcome score were 10,518 on the hidden validation set. However, we did not receive the official score for the hidden test set as our entry crashed in evaluation on the test set.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A digital phonocardiogram (PCG) provides an opportunity for automated screening in resource-constrained environments. As part of the George B. Moody PhysioNet Challenge 2022, our team, Life_Is _Now, developed a computational approach using an ensemble of deep learning classifiers for identifying abnormal cardiac function from PCG. A stratified 5-fold cross-validation was used for model development and evaluation for murmur and clinical outcome identification. The backbone of our trained classifiers is a modified pre-trained deep convolutional neural network on AudioSet-Youtube corpus (YAMNet) and transfer learning. The YAMNet model is modified and finetuned on the publicly available PhysioNet dataset. Our murmur and clinical outcome classifiers received a weighted accuracy score of 0.831 and a Challenge cost score of 14,850 from cross-validation on the public training set. Our murmur scores were 0.678 and outcome score were 10,518 on the hidden validation set. However, we did not receive the official score for the hidden test set as our entry crashed in evaluation on the test set.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用深度学习分类器对多个听诊位置记录的心音图进行心脏杂音检测
数字心音图(PCG)为资源受限环境下的自动筛查提供了机会。作为2022年George B. Moody PhysioNet挑战赛的一部分,我们的团队Life_Is _Now开发了一种使用深度学习分类器集合的计算方法,用于从PCG中识别异常心功能。分层5重交叉验证用于模型开发和评估杂音和临床结果识别。我们训练的分类器的主干是基于AudioSet-Youtube语料库(YAMNet)和迁移学习的改进预训练深度卷积神经网络。YAMNet模型在公开可用的PhysioNet数据集上进行修改和微调。我们的杂音和临床结果分类器在公共训练集的交叉验证中获得了0.831的加权准确率分数和14850的挑战成本分数。在隐藏验证集上,我们的杂音得分为0.678,结果得分为10,518。但是,我们没有收到隐藏测试集的官方分数,因为我们的条目在测试集的评估中崩溃了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Nonlinear Dynamic Response of Intrapartum Fetal Heart Rate to Uterine Pressure Heart Pulse Demodulation from Emfit Mattress Sensor Using Spectral and Source Separation Techniques Automated Algorithm for QRS Detection in Cardiac Arrest Patients with PEA Extraction Algorithm for Morphologically Preserved Non-Invasive Multi-Channel Fetal ECG Improved Pulse Pressure Estimation Based on Imaging Photoplethysmographic Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1