Scaling the Hartree-Fock Matrix Build on Summit

Giuseppe M. J. Barca, David L. Poole, J. Vallejo, Melisa Alkan, C. Bertoni, Alistair P. Rendell, M. Gordon
{"title":"Scaling the Hartree-Fock Matrix Build on Summit","authors":"Giuseppe M. J. Barca, David L. Poole, J. Vallejo, Melisa Alkan, C. Bertoni, Alistair P. Rendell, M. Gordon","doi":"10.1109/SC41405.2020.00085","DOIUrl":null,"url":null,"abstract":"Usage of Graphics Processing Units (GPU) has become strategic for simulating the chemistry of large molecular systems, with the majority of top supercomputers utilizing GPUs as their main source of computational horsepower. In this paper, a new fragmentation-based Hartree-Fock matrix build algorithm designed for scaling on many-GPU architectures is presented. The new algorithm uses a novel dynamic load balancing scheme based on a binned shell-pair container to distribute batches of significant shell quartets with the same code path to different GPUs. This maximizes computational throughput and load balancing, and eliminates GPU thread divergence due to integral screening. Additionally, the code uses a novel Fock digestion algorithm to contract electron repulsion integrals into the Fock matrix, which exploits all forms of permutational symmetry and eliminates thread synchronization requirements. The implementation demonstrates excellent scalability on the Summit computer, achieving good strong scaling performance up to 4096 nodes, and linear weak scaling up to 612 nodes.","PeriodicalId":424429,"journal":{"name":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC41405.2020.00085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Usage of Graphics Processing Units (GPU) has become strategic for simulating the chemistry of large molecular systems, with the majority of top supercomputers utilizing GPUs as their main source of computational horsepower. In this paper, a new fragmentation-based Hartree-Fock matrix build algorithm designed for scaling on many-GPU architectures is presented. The new algorithm uses a novel dynamic load balancing scheme based on a binned shell-pair container to distribute batches of significant shell quartets with the same code path to different GPUs. This maximizes computational throughput and load balancing, and eliminates GPU thread divergence due to integral screening. Additionally, the code uses a novel Fock digestion algorithm to contract electron repulsion integrals into the Fock matrix, which exploits all forms of permutational symmetry and eliminates thread synchronization requirements. The implementation demonstrates excellent scalability on the Summit computer, achieving good strong scaling performance up to 4096 nodes, and linear weak scaling up to 612 nodes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在顶点上扩展Hartree-Fock矩阵
图形处理单元(GPU)的使用已经成为模拟大分子系统化学的战略,大多数顶级超级计算机使用GPU作为其计算能力的主要来源。本文提出了一种新的基于碎片的Hartree-Fock矩阵构建算法,该算法设计用于多gpu架构下的缩放。该算法采用了一种基于装箱壳对容器的动态负载均衡方案,将具有相同代码路径的重要壳对分批分发到不同的gpu上。这最大限度地提高了计算吞吐量和负载平衡,并消除了GPU线程发散由于整体筛选。此外,该代码使用了一种新颖的Fock消化算法来将电子排斥积分压缩到Fock矩阵中,该算法利用了所有形式的排列对称并消除了线程同步要求。该实现在Summit计算机上展示了出色的可扩展性,在4096个节点上实现了良好的强扩展性能,在612个节点上实现了线性弱扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CAB-MPI: Exploring Interprocess Work-Stealing towards Balanced MPI Communication Toward Realization of Numerical Towing-Tank Tests by Wall-Resolved Large Eddy Simulation based on 32 Billion Grid Finite-Element Computation Scalable yet Rigorous Floating-Point Error Analysis Scalable Knowledge Graph Analytics at 136 Petaflop/s BORA: A Bag Optimizer for Robotic Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1