Maryam Aziz, J. Anderton, Kevin G. Jamieson, Alice Wang, Hugues Bouchard, J. Aslam
{"title":"Identifying New Podcasts with High General Appeal Using a Pure Exploration Infinitely-Armed Bandit Strategy","authors":"Maryam Aziz, J. Anderton, Kevin G. Jamieson, Alice Wang, Hugues Bouchard, J. Aslam","doi":"10.1145/3523227.3546766","DOIUrl":null,"url":null,"abstract":"Podcasting is an increasingly popular medium for entertainment and discourse around the world, with tens of thousands of new podcasts released on a monthly basis. We consider the problem of identifying from these newly-released podcasts those with the largest potential audiences so they can be considered for personalized recommendation to users. We first study and then discard a supervised approach due to the inadequacy of either content or consumption features for this task, and instead propose a novel non-contextual bandit algorithm in the fixed-budget infinitely-armed pure-exploration setting. We demonstrate that our algorithm is well-suited to the best-arm identification task for a broad class of arm reservoir distributions, out-competing a large number of state-of-the-art algorithms. We then apply the algorithm to identifying podcasts with broad appeal in a simulated study, and show that it efficiently sorts podcasts into groups by increasing appeal while avoiding the popularity bias inherent in supervised approaches.","PeriodicalId":443279,"journal":{"name":"Proceedings of the 16th ACM Conference on Recommender Systems","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3523227.3546766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Podcasting is an increasingly popular medium for entertainment and discourse around the world, with tens of thousands of new podcasts released on a monthly basis. We consider the problem of identifying from these newly-released podcasts those with the largest potential audiences so they can be considered for personalized recommendation to users. We first study and then discard a supervised approach due to the inadequacy of either content or consumption features for this task, and instead propose a novel non-contextual bandit algorithm in the fixed-budget infinitely-armed pure-exploration setting. We demonstrate that our algorithm is well-suited to the best-arm identification task for a broad class of arm reservoir distributions, out-competing a large number of state-of-the-art algorithms. We then apply the algorithm to identifying podcasts with broad appeal in a simulated study, and show that it efficiently sorts podcasts into groups by increasing appeal while avoiding the popularity bias inherent in supervised approaches.