DfAM of Nonlinear Cellular Flexible Structures

Jelena Djokikj, J. Jovanova
{"title":"DfAM of Nonlinear Cellular Flexible Structures","authors":"Jelena Djokikj, J. Jovanova","doi":"10.1115/smasis2019-5673","DOIUrl":null,"url":null,"abstract":"\n Nonlinear cellular structures are defined as structures with multiple scale unit cells patterned through the volume of the structure. The geometrical nonlinearity allows local high flexibility in the movement and also in the sense of strength of materials.\n The focus of this paper is to create a framework for design for additive manufacturing (DfAM) of a modular nonlinear cellular structure with high level of flexibility. The flexibility will be exploited in skin-like structures adaptable to freeform geometries or utilize flat printed designs for voluminous and structural 3D shapes.\n For the modeling of the structure CAD software is used and for the fabrication of the structure additive manufacturing (AM) is applied. These technologies work by adding the material in layers, which enables fabrication of parts with complex geometries. The working principal of AM which is opposite to the traditional manufacturing requires for changes in the design process. These changes are applied in the DfAM that we are presenting with this study. The DfAM is used to develop a systematic design approach to support the fabrication of unique structure shapes by AM.","PeriodicalId":235262,"journal":{"name":"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/smasis2019-5673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Nonlinear cellular structures are defined as structures with multiple scale unit cells patterned through the volume of the structure. The geometrical nonlinearity allows local high flexibility in the movement and also in the sense of strength of materials. The focus of this paper is to create a framework for design for additive manufacturing (DfAM) of a modular nonlinear cellular structure with high level of flexibility. The flexibility will be exploited in skin-like structures adaptable to freeform geometries or utilize flat printed designs for voluminous and structural 3D shapes. For the modeling of the structure CAD software is used and for the fabrication of the structure additive manufacturing (AM) is applied. These technologies work by adding the material in layers, which enables fabrication of parts with complex geometries. The working principal of AM which is opposite to the traditional manufacturing requires for changes in the design process. These changes are applied in the DfAM that we are presenting with this study. The DfAM is used to develop a systematic design approach to support the fabrication of unique structure shapes by AM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性元胞柔性结构的DfAM
非线性细胞结构被定义为具有多个尺度单位细胞的结构,通过结构的体积形成图案。几何非线性允许局部高度灵活的运动,也在材料强度的意义上。本文的重点是为具有高水平灵活性的模块化非线性细胞结构的增材制造(DfAM)设计创建一个框架。这种灵活性将被用于适应自由几何形状的皮肤状结构,或用于体积和结构3D形状的平面印刷设计。结构建模采用CAD软件,结构制造采用增材制造(AM)技术。这些技术通过分层添加材料来工作,这使得制造具有复杂几何形状的零件成为可能。增材制造的工作原理与传统制造相反,需要改变设计过程。这些变化应用于DfAM,我们在这项研究中提出。DfAM用于开发系统的设计方法,以支持AM制造独特的结构形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Coupled Electro-Thermo-Mechanical Modeling of Shape Memory Polymers Design-Oriented Multifidelity Fluid Simulation Using Machine Learned Fidelity Mapping Self-Sensing Composite Materials With Intelligent Fabrics Developing a Smart Façade System Controller for Wind-Induced Vibration Mitigation in Tall Buildings Methodology for Minimizing Operational Influences of the Test Rig During Long-Term Investigations of SMA Wires
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1