Evaluation of Multiclass Novelty Detection Algorithms for Electric Machine Monitoring

M. Ramírez Chávez, L. Ruiz Soto, F. Arellano Espitia, J. J. Saucedo, M. Delgado Prieto, L. Romeral
{"title":"Evaluation of Multiclass Novelty Detection Algorithms for Electric Machine Monitoring","authors":"M. Ramírez Chávez, L. Ruiz Soto, F. Arellano Espitia, J. J. Saucedo, M. Delgado Prieto, L. Romeral","doi":"10.1109/DEMPED.2019.8864874","DOIUrl":null,"url":null,"abstract":"The detection of unexpected events represents, currently, one of the most critical challenges dealing with electromechanical system diagnosis. In this regard, machine learning based algorithms widely applied in other fields of application are being considered now to face the novelty detection during the electric machine monitoring. In this study, an electrical monitoring scheme is considered for novelty detection performance evaluation, where vibration signals under different bearing fault conditions are acquired. Thus, the common electric machine monitoring framework, that is, a set of features estimated from a limited number of measurements, is considered in front of the three main novelty detection approaches: probability, domain and distance based. Performance of the corresponding approaches are studied and discussed experimentally. It is revealed that, although novelty detection provides enhanced diagnosis results in all cases, the response of some approaches fit better with the patterns resulting from the electric machine faults and the characteristics of the available measurements.","PeriodicalId":397001,"journal":{"name":"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2019.8864874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The detection of unexpected events represents, currently, one of the most critical challenges dealing with electromechanical system diagnosis. In this regard, machine learning based algorithms widely applied in other fields of application are being considered now to face the novelty detection during the electric machine monitoring. In this study, an electrical monitoring scheme is considered for novelty detection performance evaluation, where vibration signals under different bearing fault conditions are acquired. Thus, the common electric machine monitoring framework, that is, a set of features estimated from a limited number of measurements, is considered in front of the three main novelty detection approaches: probability, domain and distance based. Performance of the corresponding approaches are studied and discussed experimentally. It is revealed that, although novelty detection provides enhanced diagnosis results in all cases, the response of some approaches fit better with the patterns resulting from the electric machine faults and the characteristics of the available measurements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电机监测中多类新颖性检测算法的评价
对突发事件的检测是当前机电系统诊断中最关键的挑战之一。在这方面,基于机器学习的算法被广泛应用于其他应用领域,现在正在考虑面对电机监测中的新颖性检测。本研究考虑采用电气监测方案进行新颖性检测性能评价,获取不同轴承故障状态下的振动信号。因此,在三种主要的新颖性检测方法(基于概率、域和距离)之前,考虑了常见的电机监测框架,即从有限数量的测量中估计出的一组特征。对相应方法的性能进行了实验研究和讨论。结果表明,尽管新颖性检测在所有情况下都能提供更好的诊断结果,但某些方法的响应更符合电机故障的模式和现有测量的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rotating HF signal injection method improvement based on robust phase-shift estimator for self-sensing control of IPMSM Transient analysis of the external magnetic field via MUSIC methods for the diagnosis of electromechanical faults in induction motors Optimization of magnetic flux paths in transverse flux machines through the use of iron wire wound materials A Survey of Multi-Sensor Systems for Online Fault Detection of Electric Machines On-line Transmission Line Fault Classification using Long Short-Term Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1