{"title":"Exploiting Pre-trained Encoder with Receptive Fields and Squeeze-Excitation module for Road Segmentation","authors":"Anamika Maurya, S. Chand","doi":"10.1109/SPIN52536.2021.9565944","DOIUrl":null,"url":null,"abstract":"Autonomous vehicles will decrease the number of accidents on the road caused by human error. Intelligent vehicles have traditionally advanced in a step-by-step manner. These developments boost the automation scene in vehicles by incorporating systems that facilitate the driver in maintaining a constant speed, adhering to a lane, or transferring control over vehicle and driver. Autonomous vehicles must have a thorough understanding of their surroundings. As a result, object detection and road scene segmentation are critical in navigation for recognizing the drivable and non-drivable areas. Towards the development of the completely automated framework for road scene segmentation, we propose an RFB-SELinkNet that utilizes the SEResNeXt model as a feature extractor and receptive field block (RFB) with squeeze and excitation (SE) module for better feature representations. Our proposed framework outperforms D-LinkNet, Eff-UNet, and other state-of-art models. According to the experiments, the proposed model achieves 0.698 mloU and produces good segmentation outcomes on the validation set of the India Driving Lite (IDD Lite) dataset.","PeriodicalId":343177,"journal":{"name":"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPIN52536.2021.9565944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Autonomous vehicles will decrease the number of accidents on the road caused by human error. Intelligent vehicles have traditionally advanced in a step-by-step manner. These developments boost the automation scene in vehicles by incorporating systems that facilitate the driver in maintaining a constant speed, adhering to a lane, or transferring control over vehicle and driver. Autonomous vehicles must have a thorough understanding of their surroundings. As a result, object detection and road scene segmentation are critical in navigation for recognizing the drivable and non-drivable areas. Towards the development of the completely automated framework for road scene segmentation, we propose an RFB-SELinkNet that utilizes the SEResNeXt model as a feature extractor and receptive field block (RFB) with squeeze and excitation (SE) module for better feature representations. Our proposed framework outperforms D-LinkNet, Eff-UNet, and other state-of-art models. According to the experiments, the proposed model achieves 0.698 mloU and produces good segmentation outcomes on the validation set of the India Driving Lite (IDD Lite) dataset.