Linear Parameter-Varying Identification of the EMG–Force Relationship of the Human Arm

Mattia Pesenti, Z. Alkhoury, Maciej Bednarczyk, Hassan Omran, B. Bayle
{"title":"Linear Parameter-Varying Identification of the EMG–Force Relationship of the Human Arm","authors":"Mattia Pesenti, Z. Alkhoury, Maciej Bednarczyk, Hassan Omran, B. Bayle","doi":"10.1109/RO-MAN46459.2019.8956388","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel identification approach to model the EMG–Force relationship of the human arm, reduced to a single degree of freedom (1-DoF) for simplicity. Specifically, we exploit the Linear Parameter Varying (LPV) framework. The inputs of the model are the electromyographic (EMG) signals acquired on two muscles of the upper arm, biceps brachii and triceps brachii, and two muscles of the forearm, brachioradialis and flexor carpi radialis. The output of the model is the force produced at the hand actuating the elbow. Because of the position-dependency of the system, the elbow angle is used as scheduling signal for the LPV model. Accurate modeling of the human arm with this approach opens new possibilities in terms of robot control for physical Human-Robot Interaction and rehabilitation robotics.","PeriodicalId":286478,"journal":{"name":"2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RO-MAN46459.2019.8956388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we present a novel identification approach to model the EMG–Force relationship of the human arm, reduced to a single degree of freedom (1-DoF) for simplicity. Specifically, we exploit the Linear Parameter Varying (LPV) framework. The inputs of the model are the electromyographic (EMG) signals acquired on two muscles of the upper arm, biceps brachii and triceps brachii, and two muscles of the forearm, brachioradialis and flexor carpi radialis. The output of the model is the force produced at the hand actuating the elbow. Because of the position-dependency of the system, the elbow angle is used as scheduling signal for the LPV model. Accurate modeling of the human arm with this approach opens new possibilities in terms of robot control for physical Human-Robot Interaction and rehabilitation robotics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人臂肌电-力关系的线性变参数识别
在本文中,我们提出了一种新的识别方法来模拟人体手臂的肌电-力关系,为了简单起见,将其简化为单个自由度(1-DoF)。具体来说,我们利用线性参数变化(LPV)框架。该模型的输入是上臂肱二头肌和肱三头肌以及前臂肱桡肌和桡腕屈肌的肌电图信号。模型的输出是手驱动肘部所产生的力。由于系统的位置依赖性,采用弯头角度作为LPV模型的调度信号。用这种方法对人的手臂进行精确建模,为物理人机交互和康复机器人的机器人控制开辟了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comparison of Descriptive and Emotive Labels to Explain Human Perception of Gait Styles on a Compass Walker in Variable Contexts Communicating with SanTO – the first Catholic robot Transferring Dexterous Surgical Skill Knowledge between Robots for Semi-autonomous Teleoperation Improving Robot Transparency: An Investigation With Mobile Augmented Reality Development and Applicability of a Cable-driven Wearable Adaptive Rehabilitation Suit (WeARS)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1