Mapeamento do modelo L2P para Preisach usando o PSO

Alipio Moreira Motta, Demetrius Barahuna Guimarães Bezerra, Lucas da Silva Prates, Moisés Arthur Pereira Borges, Daniel Ricardo Ojeda Girata, Luiz Alberto Luz de Almeida
{"title":"Mapeamento do modelo L2P para Preisach usando o PSO","authors":"Alipio Moreira Motta, Demetrius Barahuna Guimarães Bezerra, Lucas da Silva Prates, Moisés Arthur Pereira Borges, Daniel Ricardo Ojeda Girata, Luiz Alberto Luz de Almeida","doi":"10.1109/INDUSCON51756.2021.9529402","DOIUrl":null,"url":null,"abstract":"This work proposes a new approach for the mapping of a hysteresis curve. The idea developed is based on the use of PSO (Particle Swarm Optimization) to approximate the response of two well-known hysteresis models. In this sense, the PSO seeks to obtain a polynomial expression in the form of g(x,y) that performs the mapping of the L2P Kernel model, so that its response comes close to the response of a Presaich model with the same sign of excitement. The results provide a satisfactory preliminary response according to the similarities obtained from the dinamics of the two curves where they were very close, this shows the feasibility of using PSO algorithm to deform the curve L2P Kernel to obtain another existing hysteresis model, requiring to obtain a small number of parameters in the process.","PeriodicalId":344476,"journal":{"name":"2021 14th IEEE International Conference on Industry Applications (INDUSCON)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 14th IEEE International Conference on Industry Applications (INDUSCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDUSCON51756.2021.9529402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes a new approach for the mapping of a hysteresis curve. The idea developed is based on the use of PSO (Particle Swarm Optimization) to approximate the response of two well-known hysteresis models. In this sense, the PSO seeks to obtain a polynomial expression in the form of g(x,y) that performs the mapping of the L2P Kernel model, so that its response comes close to the response of a Presaich model with the same sign of excitement. The results provide a satisfactory preliminary response according to the similarities obtained from the dinamics of the two curves where they were very close, this shows the feasibility of using PSO algorithm to deform the curve L2P Kernel to obtain another existing hysteresis model, requiring to obtain a small number of parameters in the process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
这项工作提出了一种新的迟滞曲线映射方法。该思想是基于使用粒子群优化(PSO)来近似两个众所周知的滞后模型的响应。在这个意义上,PSO寻求以g(x,y)的形式获得多项式表达式,该表达式执行L2P核模型的映射,使其响应接近具有相同兴奋符号的Presaich模型的响应。从两条曲线非常接近处的动力学相似度来看,结果提供了满意的初步响应,这表明利用PSO算法对曲线L2P核进行变形以获得另一种现有的迟滞模型是可行的,在此过程中只需要获得少量的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating Real-Time Ethernet performance indicators for SERCOS III networks Evaluation of the Harmonic Current Injection Method for Sharing of Responsibilities for Voltage Harmonic Distortions at the Point of Common Coupling Deploying the Concept of Hybrid Rectifiers Projeto Ótimo de um Gerador Síncrono de Polos Salientes utilizando Redes de Relutâncias Estimação da força tangencial para o controle de impedância de cadeira de rodas servo-assistida Parametrização de um novo alimentador de sólidos em função da eficiência energética
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1