Automated Bearing Fault Detection via Long Short-Term Memory Networks

F. Immovilli, Marco Lippi, M. Cocconcelli
{"title":"Automated Bearing Fault Detection via Long Short-Term Memory Networks","authors":"F. Immovilli, Marco Lippi, M. Cocconcelli","doi":"10.1109/DEMPED.2019.8864866","DOIUrl":null,"url":null,"abstract":"This paper presents a method for automated bearing fault detection via motor current analysis using Long Short-Term Memory networks. Minimal pre-processing is applied to current signals. The proposed approach is experimentally validated on a laboratory trial comprising different test sets for condition monitoring and fault diagnosis of a 6-poles induction motor. Preliminary results confirmed the effectiveness of the proposed method to detect various bearing faults under different operating conditions, such as: shaft radial load and output torque.","PeriodicalId":397001,"journal":{"name":"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2019.8864866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a method for automated bearing fault detection via motor current analysis using Long Short-Term Memory networks. Minimal pre-processing is applied to current signals. The proposed approach is experimentally validated on a laboratory trial comprising different test sets for condition monitoring and fault diagnosis of a 6-poles induction motor. Preliminary results confirmed the effectiveness of the proposed method to detect various bearing faults under different operating conditions, such as: shaft radial load and output torque.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过长短期记忆网络自动轴承故障检测
提出了一种基于电机电流分析的长短期记忆网络轴承故障自动检测方法。最小的预处理应用于电流信号。该方法在六极感应电机状态监测与故障诊断的实验室试验中得到了实验验证。初步结果证实了该方法在不同运行条件下检测各种轴承故障的有效性,例如:轴径向载荷和输出扭矩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rotating HF signal injection method improvement based on robust phase-shift estimator for self-sensing control of IPMSM Transient analysis of the external magnetic field via MUSIC methods for the diagnosis of electromechanical faults in induction motors Optimization of magnetic flux paths in transverse flux machines through the use of iron wire wound materials A Survey of Multi-Sensor Systems for Online Fault Detection of Electric Machines On-line Transmission Line Fault Classification using Long Short-Term Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1