{"title":"Reliability study of magnetic tunnel junction with naturally oxidized MgO barrier","authors":"C. Yoshida, T. Sugii","doi":"10.1109/IRPS.2012.6241773","DOIUrl":null,"url":null,"abstract":"We examined the breakdown characteristics of naturally oxidized MgO barriers using a time dependent dielectric breakdown (TDDB) technique. We found that the positive bias dependence of the breakdown time can be explained using the E-model and negative bias dependence can be explained using the power-law model. This asymmetric nature of the oxidized MgO barrier was due to unoxidized Mg metal at the reference/barrier interface. We also estimated the lifetime expansion under pulse voltage stress by taking the Joule heating effects into account.","PeriodicalId":341663,"journal":{"name":"2012 IEEE International Reliability Physics Symposium (IRPS)","volume":"53 36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2012.6241773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
We examined the breakdown characteristics of naturally oxidized MgO barriers using a time dependent dielectric breakdown (TDDB) technique. We found that the positive bias dependence of the breakdown time can be explained using the E-model and negative bias dependence can be explained using the power-law model. This asymmetric nature of the oxidized MgO barrier was due to unoxidized Mg metal at the reference/barrier interface. We also estimated the lifetime expansion under pulse voltage stress by taking the Joule heating effects into account.