Eigenvalues of Correlation Analysis for Higher Education Institutional Data

M. Ida
{"title":"Eigenvalues of Correlation Analysis for Higher Education Institutional Data","authors":"M. Ida","doi":"10.1109/IS3C57901.2023.00061","DOIUrl":null,"url":null,"abstract":"In this paper we examine education related data of higher education institutions or universities in Japan. Especially we examine eigenvalues of correlation analysis for universities’ data of student mobility by using the knowledge of Random Matrix Theory. We show some numerical examples to examine the effectiveness of the knowledge for eigenvalues and its application to Principal Component Analysis. Moreover, we identify the future issues of this analysis method.","PeriodicalId":142483,"journal":{"name":"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS3C57901.2023.00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we examine education related data of higher education institutions or universities in Japan. Especially we examine eigenvalues of correlation analysis for universities’ data of student mobility by using the knowledge of Random Matrix Theory. We show some numerical examples to examine the effectiveness of the knowledge for eigenvalues and its application to Principal Component Analysis. Moreover, we identify the future issues of this analysis method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高等院校数据相关分析的特征值
本文考察了日本高等教育机构或大学的教育相关数据。特别是运用随机矩阵理论的知识,对高校学生流动数据的相关分析特征值进行了检验。我们给出了一些数值例子来检验特征值知识及其在主成分分析中的应用的有效性。此外,我们还指出了该分析方法未来存在的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Overview of Coordinated Frequency Control Technologies for Wind Turbines, HVDC and Energy Storage Systems Apply Masked-attention Mask Transformer to Instance Segmentation in Pathology Images A Broadband Millimeter-Wave 5G Low Noise Amplifier Design in 22 nm Fully-Depleted Silicon-on-Insulator (FD-SOI) CMOS Wearable PVDF-TrFE-based Pressure Sensors for Throat Vibrations and Arterial Pulses Monitoring Fast Detection of Fabric Defects based on Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1