Size Dependent Intermediate Band Energy Levels and Absorption of Bound States in Box Shaped Quantum Dots

Volkan Kiziloglu, T. S. Navruz, M. Sarıtaş
{"title":"Size Dependent Intermediate Band Energy Levels and Absorption of Bound States in Box Shaped Quantum Dots","authors":"Volkan Kiziloglu, T. S. Navruz, M. Sarıtaş","doi":"10.1109/PVCON.2018.8523884","DOIUrl":null,"url":null,"abstract":"The quantum dot intermediate band solar cells (QD-IBSCs) have not reached the expected efficiencies yet, because their sub-bandgap photocurrents are too low. In this work, a single band k.p method is used for the calculation of bound state energy levels and absorption coefficients between bound states for the box shaped InAs/GaAs quantum dots. In this study, the effects of quantum dot parameters on intraband absorption and position of intermediate band energy levels are investigated. The results show that the bound state energy levels decrease with the increase of QD width and conduction band offset value. The QD height has less effect on absorption coefficients between bound states. Stronger absorption has been obtained for the smaller quantum dots. With the position-dependent effective mass, the bound state energy levels have decreased and the absorption coefficients slightly changed. The results found in this work will be the first step to design a realistic detailed balance model of QD-IBSCs.","PeriodicalId":380858,"journal":{"name":"2018 International Conference on Photovoltaic Science and Technologies (PVCon)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Photovoltaic Science and Technologies (PVCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVCON.2018.8523884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The quantum dot intermediate band solar cells (QD-IBSCs) have not reached the expected efficiencies yet, because their sub-bandgap photocurrents are too low. In this work, a single band k.p method is used for the calculation of bound state energy levels and absorption coefficients between bound states for the box shaped InAs/GaAs quantum dots. In this study, the effects of quantum dot parameters on intraband absorption and position of intermediate band energy levels are investigated. The results show that the bound state energy levels decrease with the increase of QD width and conduction band offset value. The QD height has less effect on absorption coefficients between bound states. Stronger absorption has been obtained for the smaller quantum dots. With the position-dependent effective mass, the bound state energy levels have decreased and the absorption coefficients slightly changed. The results found in this work will be the first step to design a realistic detailed balance model of QD-IBSCs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
盒形量子点中大小相关的中间能带能级和束缚态吸收
量子点中间带太阳能电池(QD-IBSCs)由于其亚带隙光电流过低,尚未达到预期的效率。本文采用单波段k.p方法计算了盒形InAs/GaAs量子点的束缚态能级和束缚态间的吸收系数。本文研究了量子点参数对带内吸收和中间能带能级位置的影响。结果表明,束缚态能级随量子点宽度和导带偏置值的增大而减小。量子点高度对束缚态间吸收系数的影响较小。较小的量子点获得了更强的吸收。随着有效质量的位置变化,束缚态能级降低,吸收系数略有变化。这项工作的结果将是设计一个现实的QD-IBSCs详细平衡模型的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electro-Optical Analysis and Numerical Modeling of Cu2O as the Absorber Layer in Advanced Solar Cells Parameters Extraction of Single and Double Diode Model Using the Flower Algorithm Two-Dimensional Numerical Analysis of Phosphorus Diffused Emitters on Black Silicon Surfaces Experimental Evaluation of Performance Drop for Crystalline Photovoltaic Modules Affected by Snail Trails Defect The Feasibility of Photovoltaic and Grid-Hybrid Power Plant for Water Pumping Station in Tabriz-Iran
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1