A static characterization of stretchable 3D-printed strain sensor for restoring proprioception in amputees

F. C. Gattinara Di Zubiena, L. D’Alvia, Z. Del Prete, E. Palermo
{"title":"A static characterization of stretchable 3D-printed strain sensor for restoring proprioception in amputees","authors":"F. C. Gattinara Di Zubiena, L. D’Alvia, Z. Del Prete, E. Palermo","doi":"10.1109/fleps53764.2022.9781497","DOIUrl":null,"url":null,"abstract":"The lack of proprioception in lower limb amputees is a major cause of gait asymmetry, balance issues and risk of falling. Various devices have been proposed to solve these problems, allowing to gather information about the gait cycle and provide the patient with sensory feedback. The static characterization of a novel stretchable strain sensor manufactured through 3D printing will be studied in this study. This sensor will be the sensitive element of a new wearable proprioceptive device for patients with passive lower limb prostheses. For the realization of the sensor, an elastomeric material (Agilus30Clear), printed with the PolyJet methodology, was used for the support while a eutectic Gallium-Indium (eGaIn) metal alloy was used as the deformation sensitive element. Static tests were conducted for studying the behavior of the sensor with respect to strain. The results provided a good response to the stimulus with good repeatability, sensitivity and R2 values.","PeriodicalId":221424,"journal":{"name":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/fleps53764.2022.9781497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The lack of proprioception in lower limb amputees is a major cause of gait asymmetry, balance issues and risk of falling. Various devices have been proposed to solve these problems, allowing to gather information about the gait cycle and provide the patient with sensory feedback. The static characterization of a novel stretchable strain sensor manufactured through 3D printing will be studied in this study. This sensor will be the sensitive element of a new wearable proprioceptive device for patients with passive lower limb prostheses. For the realization of the sensor, an elastomeric material (Agilus30Clear), printed with the PolyJet methodology, was used for the support while a eutectic Gallium-Indium (eGaIn) metal alloy was used as the deformation sensitive element. Static tests were conducted for studying the behavior of the sensor with respect to strain. The results provided a good response to the stimulus with good repeatability, sensitivity and R2 values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于恢复截肢者本体感觉的可拉伸3d打印应变传感器的静态特性
下肢截肢者缺乏本体感觉是步态不对称、平衡问题和跌倒风险的主要原因。已经提出了各种设备来解决这些问题,允许收集有关步态周期的信息并为患者提供感官反馈。本研究将研究一种新型3D打印可拉伸应变传感器的静态特性。该传感器将成为一种新型可穿戴本体感觉装置的敏感元件,用于被动下肢假肢患者。为了实现传感器,使用PolyJet方法打印的弹性体材料(Agilus30Clear)作为支撑,而共晶镓铟(eGaIn)金属合金用作变形敏感元件。为了研究传感器在应变下的性能,进行了静态试验。结果对刺激具有良好的重复性、灵敏度和R2值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conducting Polymer based Field-Effect Transistor for Volatile Organic Compound Sensing Demonstration of near-field capacitive standard communication bus for ultrathin reconfigurable sensor nodes 3D Printed Embedded Strain Sensor with Enhanced Performance Flexible and stretchable conductive fabric for temperature detection Facile Fabrication of Graphene Oxide-based Flexible Temperature Sensor and Improving its Humidity Stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1