Machine Learning Prediction of Defect Formation Energies in a-SiO2

D. Milardovich, M. Jech, Dominic Waldhoer, M. Waltl, T. Grasser
{"title":"Machine Learning Prediction of Defect Formation Energies in a-SiO2","authors":"D. Milardovich, M. Jech, Dominic Waldhoer, M. Waltl, T. Grasser","doi":"10.23919/SISPAD49475.2020.9241609","DOIUrl":null,"url":null,"abstract":"Due to its stochastic nature, the calculation of defect formation energies in amorphous structures is a CPU-intensive task. We demonstrate the use of machine learning to predict defect formation energies to significantly minimize the number of required calculations. Different combinations of descriptors and machine learning algorithms are used to predict the formation energies of hydroxyl E’ center defects in amorphous silicon dioxide structures. The performance of each combination is analyzed and compared to results obtained from direct ab initio calculations.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SISPAD49475.2020.9241609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to its stochastic nature, the calculation of defect formation energies in amorphous structures is a CPU-intensive task. We demonstrate the use of machine learning to predict defect formation energies to significantly minimize the number of required calculations. Different combinations of descriptors and machine learning algorithms are used to predict the formation energies of hydroxyl E’ center defects in amorphous silicon dioxide structures. The performance of each combination is analyzed and compared to results obtained from direct ab initio calculations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
a-SiO2中缺陷形成能的机器学习预测
由于其随机性,非晶结构中缺陷形成能的计算是一项cpu密集型的任务。我们演示了使用机器学习来预测缺陷形成能量,以显着减少所需的计算次数。利用描述符和机器学习算法的不同组合来预测非晶二氧化硅结构中羟基E中心缺陷的形成能。对每种组合的性能进行了分析,并与直接从头算得到的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Power Device Degradation Estimation by Machine Learning of Gate Waveforms Numerical Solution of the Constrained Wigner Equation Nanoscale FET: How To Make Atomistic Simulation Versatile, Predictive, and Fast at 5nm Node and Below Fully Analog ReRAM Neuromorphic Circuit Optimization using DTCO Simulation Framework Analytical Formulae for the Surface Green’s Functions of Graphene and 1T’ MoS2 Nanoribbons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1