Support Vector Regression Dalam Prediksi Penurunan Jumlah Kasus Penderita Covid-19

Dodi Suprayogi, H. Pardede
{"title":"Support Vector Regression Dalam Prediksi Penurunan Jumlah Kasus Penderita Covid-19","authors":"Dodi Suprayogi, H. Pardede","doi":"10.31328/jointecs.v7i2.3687","DOIUrl":null,"url":null,"abstract":"Penyebaran Virus COVID-19 sangat mengkhawatirkan dan terus menyebar serta meluas di seluruh negara terinfeksi mulai dari anak-anak hingga orang dewasa. Banyak cara dalam membuat suatu prediksi, dalam hal ini menentukan prediksi  jumlah penderita COVID-19 bisa dengan menggunakan machine learning, tidak hanya COVID-19. Penelitian ini mencoba memprediksi kapan Pandemic COVID-19 ini menurun dengan menggunakan algoritma SVR dengan kernel RBF, Linear, Polynomial, dan Sigmoid, pemilihan model menggunakan SVR karena SVR mampu mengatasi overfitting. Penelitian ini menggunakan dataset dari github John Hopkins University menggunakan sample lima negara dengan jumlah kasus COVID-19 yang berbeda. Hasil yang didapat untuk kernel RBF sangat baik untuk lima negara dalam membuat pola grafik yang fit antara data aktual dan data prediksi, dengan melakukan tunning parameter yang berbeda-beda disetiap negara, kemudian melakukan pengujian nilai gamma untuk mendapatkan nilai RMSE, R2, dan MAE, hasil terbaik ada pada negara Jerman dengan nilai RMSE 0.099, kemudian Itali dengan nilai RMSE 0.101, Indonesia nilai RMSE 0.102, brazil nilai RMSE 0.105, dan US nilai RMSE 0.105. ","PeriodicalId":259537,"journal":{"name":"JOINTECS (Journal of Information Technology and Computer Science)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOINTECS (Journal of Information Technology and Computer Science)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31328/jointecs.v7i2.3687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Penyebaran Virus COVID-19 sangat mengkhawatirkan dan terus menyebar serta meluas di seluruh negara terinfeksi mulai dari anak-anak hingga orang dewasa. Banyak cara dalam membuat suatu prediksi, dalam hal ini menentukan prediksi  jumlah penderita COVID-19 bisa dengan menggunakan machine learning, tidak hanya COVID-19. Penelitian ini mencoba memprediksi kapan Pandemic COVID-19 ini menurun dengan menggunakan algoritma SVR dengan kernel RBF, Linear, Polynomial, dan Sigmoid, pemilihan model menggunakan SVR karena SVR mampu mengatasi overfitting. Penelitian ini menggunakan dataset dari github John Hopkins University menggunakan sample lima negara dengan jumlah kasus COVID-19 yang berbeda. Hasil yang didapat untuk kernel RBF sangat baik untuk lima negara dalam membuat pola grafik yang fit antara data aktual dan data prediksi, dengan melakukan tunning parameter yang berbeda-beda disetiap negara, kemudian melakukan pengujian nilai gamma untuk mendapatkan nilai RMSE, R2, dan MAE, hasil terbaik ada pada negara Jerman dengan nilai RMSE 0.099, kemudian Itali dengan nilai RMSE 0.101, Indonesia nilai RMSE 0.102, brazil nilai RMSE 0.105, dan US nilai RMSE 0.105. 
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持向量回归预测下降Covid-19病例
COVID-19病毒的传播是非常令人担忧的,它继续在全国范围内从儿童到成人传播。有很多方法可以预测,在这种情况下,决定患者数量COVID-19可以使用学习机器,而不仅仅是COVID-19。该研究试图预测,使用带有RBF、线程、多面体和Sigmoid的SVR算法,即选择模型使用SVR,因为SVR有处理不当的能力。这项研究使用了约翰霍普金斯大学github大学的数据集,使用了五个不同科维-19病例的国家样本。得到的结果为优秀内核RBF让健康的图表模式中五个国家实际数据和预测数据,做调音了每个国家不同的参数,然后测试成绩的伽马值RMSE, R2和梅,最好的结果是德国国家的RMSE值0.099,然后是意大利的RMSE值0.101,印尼的RMSE值0.102,巴西的RMSE值0.105,和美国价值RMSE 0.105。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sentimen Analisis Aplikasi Belajar Online Menggunakan Klasifikasi SVM Deteksi Mata di Video Smartphone Menggunakan Mediapipe Python Adopsi Pembangkit Kunci Blum Blum Shub Dan Bilangan Euler Pada Algoritma Extended Vigenere Pengukuran Usability Pada Learning Management System UMNU Kebumen Menggunakan System Usability Scale Analisis Sentimen Berbasis Aspek Ulasan Pelanggan Restoran Menggunakan LSTM Dengan Adam Optimizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1