Analisis Sentimen Berbasis Aspek Ulasan Pelanggan Restoran Menggunakan LSTM Dengan Adam Optimizer

Wardianto Wardianto, Farikhin Farikhin, Dinar Mutiara Kusumo Nugraheni
{"title":"Analisis Sentimen Berbasis Aspek Ulasan Pelanggan Restoran Menggunakan LSTM Dengan Adam Optimizer","authors":"Wardianto Wardianto, Farikhin Farikhin, Dinar Mutiara Kusumo Nugraheni","doi":"10.31328/jointecs.v8i2.4737","DOIUrl":null,"url":null,"abstract":"Consumers believe that restaurant reviews are very important when choosing a restaurant. Due to the fact that reviews have become one of the most effective ways to influence customer decisions, research that has been done on restaurant customer reviews is about sentiment analysis. Previous studies have only used sentiment analysis at the sentence or document level, while a better level uses Aspect-Based Sentiment Analysis (ABSA), or a type of aspect-based sentiment analysis. LSTM is a variant of RNN that stores long-term information in memory cells. Use of global max pooling to reduce output resolution features and prevent overfitting. In addition, the optimization method used by Adam Optimizer is an adaptive learning rate optimization algorithm specifically designed to train deep neural networks. This study aims to classify restaurant customer opinions based on aspects (food, place, service, and price) based on restaurant customer reviews on Indonesian-language TripAdvisor with LSTM and global max pooling for sentiment classification (negative, half negative, neutral, half positive, positive). The results of this study indicate that the ABSA in restaurant customer reviews for sentiment classification accuracy is 78.7% and the aspect category accuracy is 78%, both are interconnected and can help understand restaurant customer opinions on TripAdvisor.","PeriodicalId":259537,"journal":{"name":"JOINTECS (Journal of Information Technology and Computer Science)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOINTECS (Journal of Information Technology and Computer Science)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31328/jointecs.v8i2.4737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Consumers believe that restaurant reviews are very important when choosing a restaurant. Due to the fact that reviews have become one of the most effective ways to influence customer decisions, research that has been done on restaurant customer reviews is about sentiment analysis. Previous studies have only used sentiment analysis at the sentence or document level, while a better level uses Aspect-Based Sentiment Analysis (ABSA), or a type of aspect-based sentiment analysis. LSTM is a variant of RNN that stores long-term information in memory cells. Use of global max pooling to reduce output resolution features and prevent overfitting. In addition, the optimization method used by Adam Optimizer is an adaptive learning rate optimization algorithm specifically designed to train deep neural networks. This study aims to classify restaurant customer opinions based on aspects (food, place, service, and price) based on restaurant customer reviews on Indonesian-language TripAdvisor with LSTM and global max pooling for sentiment classification (negative, half negative, neutral, half positive, positive). The results of this study indicate that the ABSA in restaurant customer reviews for sentiment classification accuracy is 78.7% and the aspect category accuracy is 78%, both are interconnected and can help understand restaurant customer opinions on TripAdvisor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用亚当优化器的 LSTM 对餐厅顾客评论进行基于方面的情感分析
消费者认为,在选择餐厅时,餐厅评论是非常重要的。由于评论已经成为影响顾客决策的最有效的方法之一,对餐馆顾客评论的研究是关于情绪分析的。以前的研究只在句子或文档层面使用情感分析,而更好的层次使用基于方面的情感分析(ABSA),或一种基于方面的情感分析。LSTM是RNN的一种变体,它将长期信息存储在记忆细胞中。使用全局最大池来减少输出分辨率特征并防止过拟合。此外,Adam Optimizer使用的优化方法是一种专门为训练深度神经网络而设计的自适应学习率优化算法。本研究的目的是基于印尼语TripAdvisor上的餐厅顾客评论,使用LSTM和全球最大池进行情绪分类(负面、半负面、中性、半正面、正面),根据各方面(食物、地点、服务和价格)对餐厅顾客的意见进行分类。本研究结果表明,餐厅顾客评论中的ABSA对情绪分类的准确率为78.7%,方面分类的准确率为78%,两者是相互关联的,可以帮助理解餐厅顾客对TripAdvisor的意见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sentimen Analisis Aplikasi Belajar Online Menggunakan Klasifikasi SVM Deteksi Mata di Video Smartphone Menggunakan Mediapipe Python Adopsi Pembangkit Kunci Blum Blum Shub Dan Bilangan Euler Pada Algoritma Extended Vigenere Pengukuran Usability Pada Learning Management System UMNU Kebumen Menggunakan System Usability Scale Analisis Sentimen Berbasis Aspek Ulasan Pelanggan Restoran Menggunakan LSTM Dengan Adam Optimizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1