首页 > 最新文献

JOINTECS (Journal of Information Technology and Computer Science)最新文献

英文 中文
Analisis Sentimen Berbasis Aspek Ulasan Pelanggan Restoran Menggunakan LSTM Dengan Adam Optimizer 使用亚当优化器的 LSTM 对餐厅顾客评论进行基于方面的情感分析
Pub Date : 2023-07-01 DOI: 10.31328/jointecs.v8i2.4737
Wardianto Wardianto, Farikhin Farikhin, Dinar Mutiara Kusumo Nugraheni
Consumers believe that restaurant reviews are very important when choosing a restaurant. Due to the fact that reviews have become one of the most effective ways to influence customer decisions, research that has been done on restaurant customer reviews is about sentiment analysis. Previous studies have only used sentiment analysis at the sentence or document level, while a better level uses Aspect-Based Sentiment Analysis (ABSA), or a type of aspect-based sentiment analysis. LSTM is a variant of RNN that stores long-term information in memory cells. Use of global max pooling to reduce output resolution features and prevent overfitting. In addition, the optimization method used by Adam Optimizer is an adaptive learning rate optimization algorithm specifically designed to train deep neural networks. This study aims to classify restaurant customer opinions based on aspects (food, place, service, and price) based on restaurant customer reviews on Indonesian-language TripAdvisor with LSTM and global max pooling for sentiment classification (negative, half negative, neutral, half positive, positive). The results of this study indicate that the ABSA in restaurant customer reviews for sentiment classification accuracy is 78.7% and the aspect category accuracy is 78%, both are interconnected and can help understand restaurant customer opinions on TripAdvisor.
消费者认为,在选择餐厅时,餐厅评论是非常重要的。由于评论已经成为影响顾客决策的最有效的方法之一,对餐馆顾客评论的研究是关于情绪分析的。以前的研究只在句子或文档层面使用情感分析,而更好的层次使用基于方面的情感分析(ABSA),或一种基于方面的情感分析。LSTM是RNN的一种变体,它将长期信息存储在记忆细胞中。使用全局最大池来减少输出分辨率特征并防止过拟合。此外,Adam Optimizer使用的优化方法是一种专门为训练深度神经网络而设计的自适应学习率优化算法。本研究的目的是基于印尼语TripAdvisor上的餐厅顾客评论,使用LSTM和全球最大池进行情绪分类(负面、半负面、中性、半正面、正面),根据各方面(食物、地点、服务和价格)对餐厅顾客的意见进行分类。本研究结果表明,餐厅顾客评论中的ABSA对情绪分类的准确率为78.7%,方面分类的准确率为78%,两者是相互关联的,可以帮助理解餐厅顾客对TripAdvisor的意见。
{"title":"Analisis Sentimen Berbasis Aspek Ulasan Pelanggan Restoran Menggunakan LSTM Dengan Adam Optimizer","authors":"Wardianto Wardianto, Farikhin Farikhin, Dinar Mutiara Kusumo Nugraheni","doi":"10.31328/jointecs.v8i2.4737","DOIUrl":"https://doi.org/10.31328/jointecs.v8i2.4737","url":null,"abstract":"Consumers believe that restaurant reviews are very important when choosing a restaurant. Due to the fact that reviews have become one of the most effective ways to influence customer decisions, research that has been done on restaurant customer reviews is about sentiment analysis. Previous studies have only used sentiment analysis at the sentence or document level, while a better level uses Aspect-Based Sentiment Analysis (ABSA), or a type of aspect-based sentiment analysis. LSTM is a variant of RNN that stores long-term information in memory cells. Use of global max pooling to reduce output resolution features and prevent overfitting. In addition, the optimization method used by Adam Optimizer is an adaptive learning rate optimization algorithm specifically designed to train deep neural networks. This study aims to classify restaurant customer opinions based on aspects (food, place, service, and price) based on restaurant customer reviews on Indonesian-language TripAdvisor with LSTM and global max pooling for sentiment classification (negative, half negative, neutral, half positive, positive). The results of this study indicate that the ABSA in restaurant customer reviews for sentiment classification accuracy is 78.7% and the aspect category accuracy is 78%, both are interconnected and can help understand restaurant customer opinions on TripAdvisor.","PeriodicalId":259537,"journal":{"name":"JOINTECS (Journal of Information Technology and Computer Science)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134589010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sentimen Analisis Aplikasi Belajar Online Menggunakan Klasifikasi SVM 使用SVM分类,在线学习应用程序分析
Pub Date : 2023-07-01 DOI: 10.31328/jointecs.v8i2.4747
Adi Ariyo Munandar, Farikhin Farikhin, C. Widodo
Google Play Store is where a wide variety of applications are available, whether paid or not. Google Play Store page is a place for application users to express opinions, reviews and ratings. Ruang Guru, Zenius and Quipper are available on the platform. Analysis was carried out using sentiment analysis and SVM algorithm. Data was obtained using data scraping techniques, using help of google-play-scraper library. Web scraping process is divided into 3 stages namely Fetching, Extraction, and Transformation. Data collected is 30,000 data which is divided into 10,000 data for each application. Research begins with data preprocessing stage which includes normalization, case folding, cleaning, tokenizing, and stopwords. then data is divided into 90% training data and 10% test data. Training data is labeled with values 1, 0, and -1. Value 1 means positive, value 0 means neutral and -1 means negative. Results of classification sentiment using SVM show that Ruang Guru has highest positive value compared to Zenius and Quipper. However, user response equally gives a positive value for application. Accuracy value of research shows that sentiment classification data with SVM has an average accuracy for Ruang Guru of 99%, Zenius of 96%, and Quipper of 82%.
Google Play Store提供各种各样的应用程序,无论是否付费。Google Play Store页面是应用程序用户表达意见、评论和评分的地方。Ruang Guru, Zenius和Quipper都可以在平台上使用。采用情感分析和支持向量机算法进行分析。使用数据抓取技术,借助于google-play-scraper库获得数据。Web抓取过程分为抓取、提取和转换3个阶段。收集的数据为30,000个数据,每个应用程序分为10,000个数据。研究从数据预处理阶段开始,包括规范化、案例折叠、清理、标记化和停止词。然后将数据分为90%的训练数据和10%的测试数据。训练数据被标记为值1,0和-1。值1表示积极,值0表示中性,-1表示消极。基于支持向量机的情感分类结果显示,与Zenius和Quipper相比,Ruang Guru具有最高的正面价值。然而,用户的反应同样为应用程序提供了积极的价值。研究的准确率值表明,使用SVM的情感分类数据,Ruang Guru平均准确率为99%,Zenius平均准确率为96%,Quipper平均准确率为82%。
{"title":"Sentimen Analisis Aplikasi Belajar Online Menggunakan Klasifikasi SVM","authors":"Adi Ariyo Munandar, Farikhin Farikhin, C. Widodo","doi":"10.31328/jointecs.v8i2.4747","DOIUrl":"https://doi.org/10.31328/jointecs.v8i2.4747","url":null,"abstract":"Google Play Store is where a wide variety of applications are available, whether paid or not. Google Play Store page is a place for application users to express opinions, reviews and ratings. Ruang Guru, Zenius and Quipper are available on the platform. Analysis was carried out using sentiment analysis and SVM algorithm. Data was obtained using data scraping techniques, using help of google-play-scraper library. Web scraping process is divided into 3 stages namely Fetching, Extraction, and Transformation. Data collected is 30,000 data which is divided into 10,000 data for each application. Research begins with data preprocessing stage which includes normalization, case folding, cleaning, tokenizing, and stopwords. then data is divided into 90% training data and 10% test data. Training data is labeled with values 1, 0, and -1. Value 1 means positive, value 0 means neutral and -1 means negative. Results of classification sentiment using SVM show that Ruang Guru has highest positive value compared to Zenius and Quipper. However, user response equally gives a positive value for application. Accuracy value of research shows that sentiment classification data with SVM has an average accuracy for Ruang Guru of 99%, Zenius of 96%, and Quipper of 82%.","PeriodicalId":259537,"journal":{"name":"JOINTECS (Journal of Information Technology and Computer Science)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129285374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adopsi Pembangkit Kunci Blum Blum Shub Dan Bilangan Euler Pada Algoritma Extended Vigenere
Pub Date : 2023-07-01 DOI: 10.31328/jointecs.v8i2.4326
Eka Ardhianto, W. Handoko, Endang Lestariningsih, Felix Andreas Sutanto
Algoritma Vigenere merupakan model algoritma enkripsi yang sampai saat ini masih dikembangkan dalam bidang keamanan infromasi sampai saat ini. Salah satu aspek yang dipandang penting dalam bidang keamanan informasi adalah confidentiality. Permasalahan pencapaian confidentiality pesan atau informasi yang tinggi menjadi sesuatu yang kritis dalam bidang pengamanan informasi. Extended Vigenere dikenal sebagai evolusi Vigenere yang menggaplikasikan jumlah karakter set yang lebih luas. Salah satu pengembangan dalam algoritma Vigenere adalah dengan memodifikasi pembangkit kunci yang digunakan. Eksperimen ini bertujuan untuk melihat pengaruh confidentiality informasi terhadap penggunaan pembangkit kunci Blum Blum Shub (BBS) dan Bilangan Euler yang diaplikasikan pada Extended Vigenere. Metode pembangkit kunci BBS dan Bilangan Euler digunakan secara berurutan. Sebagai metrik pengukuran digunakan perhitungan entropi terhadap output Extended Vigenere. Hasil yang diperoleh ialah berupa peningkatan confidentiality informasi yang signifikan dengan nilai capaian entropi lebih dari 79% terhadap entropi optimum
Vigenere算法是一种加密算法的模型,至今仍在信息安全领域开发。被视为信息安全的一个重要方面是自信。信息或高信息的可靠性问题已成为信息安全领域的关键问题。延长维杰尼尔被称为维杰尼尔进化,这意味着更广泛的集合字符的数量。Vigenere算法的开发之一是修改所使用的键发生器。这个实验旨在confidentiality信息看到影响电站钥匙仍未使用仍未Shub (BBS)和扩展应用的欧拉数Vigenere。BBS和欧拉号的安装方法是连续使用的。作为一种度量指标,用熵输出的扩展维杰尼尔进行计算。所得的结果是confidentiality显著成就的价值的信息熵增加的超过79%的最佳对熵
{"title":"Adopsi Pembangkit Kunci Blum Blum Shub Dan Bilangan Euler Pada Algoritma Extended Vigenere","authors":"Eka Ardhianto, W. Handoko, Endang Lestariningsih, Felix Andreas Sutanto","doi":"10.31328/jointecs.v8i2.4326","DOIUrl":"https://doi.org/10.31328/jointecs.v8i2.4326","url":null,"abstract":"Algoritma Vigenere merupakan model algoritma enkripsi yang sampai saat ini masih dikembangkan dalam bidang keamanan infromasi sampai saat ini. Salah satu aspek yang dipandang penting dalam bidang keamanan informasi adalah confidentiality. Permasalahan pencapaian confidentiality pesan atau informasi yang tinggi menjadi sesuatu yang kritis dalam bidang pengamanan informasi. Extended Vigenere dikenal sebagai evolusi Vigenere yang menggaplikasikan jumlah karakter set yang lebih luas. Salah satu pengembangan dalam algoritma Vigenere adalah dengan memodifikasi pembangkit kunci yang digunakan. Eksperimen ini bertujuan untuk melihat pengaruh confidentiality informasi terhadap penggunaan pembangkit kunci Blum Blum Shub (BBS) dan Bilangan Euler yang diaplikasikan pada Extended Vigenere. Metode pembangkit kunci BBS dan Bilangan Euler digunakan secara berurutan. Sebagai metrik pengukuran digunakan perhitungan entropi terhadap output Extended Vigenere. Hasil yang diperoleh ialah berupa peningkatan confidentiality informasi yang signifikan dengan nilai capaian entropi lebih dari 79% terhadap entropi optimum","PeriodicalId":259537,"journal":{"name":"JOINTECS (Journal of Information Technology and Computer Science)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130534442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deteksi Mata di Video Smartphone Menggunakan Mediapipe Python
Pub Date : 2023-07-01 DOI: 10.31328/jointecs.v8i2.4562
Muhammad Furqan Rasyid, M. S. Mustafa, Andi Asvin Mahersatillah Suradi, M. Rizal, Mushaf Mushaf, Arham Arifin
Eye detection technology is used to recognize and analyze unique features of a person's eyes as a way to identify or authenticate their identity. This technology can be used in various applications such as pattern recognition, biometric systems, surveillance systems, and others. Most applications require precision in eye detection, so a fast and reliable eye detection method is needed. In this research, an eye detection method is proposed using the Python OpenCV and MediaPipe libraries, which offer better accuracy compared to existing solutions. Both libraries are implemented in the Python programming language, which is popular among software developers for its ability in object-oriented programming, easy data manipulation and processing, and availability of libraries and modules in various fields such as artificial intelligence. The system was tested using videos captured using a smartphone. Although the videos were captured under suboptimal conditions, such as imperfect lighting, testing was conducted on 56 videos that had relatively good quality and lasted about 5-10 seconds. The results obtained showed an accuracy rate of 100%. Additionally, the system can distinguish between open and closed eye conditions, which will facilitate further research in detecting eye blinks. In conclusion, the model created can detect eyes with a very high accuracy rate.
眼睛检测技术用于识别和分析一个人眼睛的独特特征,作为识别或验证其身份的一种方式。该技术可用于各种应用,如模式识别、生物识别系统、监视系统等。大多数应用都要求眼部检测的精度,因此需要一种快速可靠的眼部检测方法。在本研究中,提出了一种使用Python OpenCV和MediaPipe库的眼睛检测方法,与现有解决方案相比,该方法具有更好的准确性。这两个库都是用Python编程语言实现的,Python在软件开发人员中很受欢迎,因为它具有面向对象编程的能力,易于数据操作和处理,以及在人工智能等各个领域的库和模块的可用性。该系统使用智能手机拍摄的视频进行了测试。虽然这些视频是在不理想的条件下拍摄的,比如光线不完美,但我们对56个质量相对较好的视频进行了测试,这些视频持续了大约5-10秒。结果表明,该方法的准确率为100%。此外,该系统可以区分睁眼和闭眼状态,这将有助于进一步研究检测眨眼。综上所述,所建立的模型能够以非常高的准确率检测眼睛。
{"title":"Deteksi Mata di Video Smartphone Menggunakan Mediapipe Python","authors":"Muhammad Furqan Rasyid, M. S. Mustafa, Andi Asvin Mahersatillah Suradi, M. Rizal, Mushaf Mushaf, Arham Arifin","doi":"10.31328/jointecs.v8i2.4562","DOIUrl":"https://doi.org/10.31328/jointecs.v8i2.4562","url":null,"abstract":"Eye detection technology is used to recognize and analyze unique features of a person's eyes as a way to identify or authenticate their identity. This technology can be used in various applications such as pattern recognition, biometric systems, surveillance systems, and others. Most applications require precision in eye detection, so a fast and reliable eye detection method is needed. In this research, an eye detection method is proposed using the Python OpenCV and MediaPipe libraries, which offer better accuracy compared to existing solutions. Both libraries are implemented in the Python programming language, which is popular among software developers for its ability in object-oriented programming, easy data manipulation and processing, and availability of libraries and modules in various fields such as artificial intelligence. The system was tested using videos captured using a smartphone. Although the videos were captured under suboptimal conditions, such as imperfect lighting, testing was conducted on 56 videos that had relatively good quality and lasted about 5-10 seconds. The results obtained showed an accuracy rate of 100%. Additionally, the system can distinguish between open and closed eye conditions, which will facilitate further research in detecting eye blinks. In conclusion, the model created can detect eyes with a very high accuracy rate.","PeriodicalId":259537,"journal":{"name":"JOINTECS (Journal of Information Technology and Computer Science)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130428312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pengukuran Usability Pada Learning Management System UMNU Kebumen Menggunakan System Usability Scale 企鹅可用性模式学习管理系统UMNU可不门梦古那坎系统可用性量表
Pub Date : 2023-07-01 DOI: 10.31328/jointecs.v8i2.4405
Ghufron Zaida Muflih, Iis Nurlaeli, Ageng Restu Triyanto
Learning Management System is a website-based online learning media commonly used in universities. The quality of a system can be measured by the level of usability. System's usability is crucial for the level of acceptance and satisfaction of the users. Therefore it is necessary to evaluate and test whether the system used is by its usefulness
学习管理系统是高校常用的基于网站的在线学习媒体。系统的质量可以通过可用性水平来衡量。系统的可用性对于用户的接受程度和满意度至关重要。因此,有必要对所使用的系统是否有用进行评估和测试
{"title":"Pengukuran Usability Pada Learning Management System UMNU Kebumen Menggunakan System Usability Scale","authors":"Ghufron Zaida Muflih, Iis Nurlaeli, Ageng Restu Triyanto","doi":"10.31328/jointecs.v8i2.4405","DOIUrl":"https://doi.org/10.31328/jointecs.v8i2.4405","url":null,"abstract":"Learning Management System is a website-based online learning media commonly used in universities. The quality of a system can be measured by the level of usability. System's usability is crucial for the level of acceptance and satisfaction of the users. Therefore it is necessary to evaluate and test whether the system used is by its usefulness","PeriodicalId":259537,"journal":{"name":"JOINTECS (Journal of Information Technology and Computer Science)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133095193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analisis SMOTE Pada Klasifikasi Hepatitis C Berbasis Random Forest dan Naïve Bayes 烟对基于随机森林和天真贝斯的丙型肝炎分类的分析
Pub Date : 2023-06-13 DOI: 10.31328/jointecs.v8i1.4456
Nabilah Sharfina, Nur Ghaniaviyanto Ramadhan
According to WHO
根据世卫组织
{"title":"Analisis SMOTE Pada Klasifikasi Hepatitis C Berbasis Random Forest dan Naïve Bayes","authors":"Nabilah Sharfina, Nur Ghaniaviyanto Ramadhan","doi":"10.31328/jointecs.v8i1.4456","DOIUrl":"https://doi.org/10.31328/jointecs.v8i1.4456","url":null,"abstract":"According to WHO","PeriodicalId":259537,"journal":{"name":"JOINTECS (Journal of Information Technology and Computer Science)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128945857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Pengendali Dan Pemantau Arus Tegangan Pada Terminal Listrik Rumah Tangga Berbasis IoT 控制和监控基于在家终端的电压电流
Pub Date : 2023-06-13 DOI: 10.31328/jointecs.v8i1.4633
A. Setiawan, Istiadi Istiadi, Gigih Priyandoko
Internet of things (IoT) sangat bermanfaat memberikan peran membantu aktivitas rumah tangga dalam kehidupan sehari-hari. Dengan kecanggihan yang disajikan oleh Internet of Things (IoT), memungkinkan IoT untuk melakukan pengontrolan dan pemantauan penggunaan listrik pada suatu lokasi dari jarak jauh tanpa menggunakan kabel yang dikontrol melalui smart phone yang kita miliki. Korsleting listrik banyak ditemukan di kota-kota besar yang dimana penggunaan listrik berlebih tanpa ada pengontrolan sehingga menimbulkan panas pada suatu perlengkapan elektronik yang mengakibatkan percikan api dan kebakaran rumah. Tujuan dalam penelitian ini yaitu mengembangkan teknologi smart home dalam mengendalikan dengan memanfaatkan smartphone android dan teknologi wifi. Hal ini juga membantu pengguna untuk mengendalikan perangkat smart home hanya dengan smartphone dan memanfaatkan teknologi wifi. Hasil dalam penelitian ini yaitu 223 volt ampere meter dengan arus 1 sebesar 0,03 dan arus 2 sebesar 3,29. Rata-rata waktu dalam penyusutan tegangan sebesar 1,66 detik. Dengan Smart Electric Terminal berbasis Internet of Things kita dapat melakukan pemantauan dan pengendalian penggunaan listrik di rumah kita. Microcontroller NodeMCU dan Arduino Nano dilengkapi dengan dua Sensor Arus ACS712 dan Sensor SCT013 dengan tambahan satu Sensor Tegangan ZMPT1018 memudahkan pengguna untuk mengatur dan memantau pergerakan aktivitas listrik di rumah. Tidak hanya itu Smart Electric Terminal dilengkapi dengan Modul Relay yang dimana dapat memutus arus listrik yang berlebih.
互联网(许多东西)在日常生活中扮演着有益的角色。随着事物互联网提供的复杂程度,在不使用我们现有的智能手机控制电缆的情况下,可以进行远程控制和监控电力使用。在过度使用电力而没有减少的大城市里,电力中断很常见,导致电器产生热量,导致火花和家庭火灾。这项研究的目标是开发利用android智能手机和wifi技术来控制智能家庭。它还可以帮助用户只使用智能手机控制智能家庭设备,并利用wifi技术。研究的结果是223伏安培米,电流为1。03,电流为2。紧张缩短的平均时间为1.66秒。有了智能电气的终端,我们可以监控和控制家里的电力使用。微控制器NodeMCU和Arduino Nano配备两个电流传感器和SCT013传感器,再加上一个ZMPT1018电压传感器,使用户能够组织和监控家庭电活动的运动。智能电气终端不仅配备了继电器模块,可以切断多余的电流。
{"title":"Pengendali Dan Pemantau Arus Tegangan Pada Terminal Listrik Rumah Tangga Berbasis IoT","authors":"A. Setiawan, Istiadi Istiadi, Gigih Priyandoko","doi":"10.31328/jointecs.v8i1.4633","DOIUrl":"https://doi.org/10.31328/jointecs.v8i1.4633","url":null,"abstract":"Internet of things (IoT) sangat bermanfaat memberikan peran membantu aktivitas rumah tangga dalam kehidupan sehari-hari. Dengan kecanggihan yang disajikan oleh Internet of Things (IoT), memungkinkan IoT untuk melakukan pengontrolan dan pemantauan penggunaan listrik pada suatu lokasi dari jarak jauh tanpa menggunakan kabel yang dikontrol melalui smart phone yang kita miliki. Korsleting listrik banyak ditemukan di kota-kota besar yang dimana penggunaan listrik berlebih tanpa ada pengontrolan sehingga menimbulkan panas pada suatu perlengkapan elektronik yang mengakibatkan percikan api dan kebakaran rumah. Tujuan dalam penelitian ini yaitu mengembangkan teknologi smart home dalam mengendalikan dengan memanfaatkan smartphone android dan teknologi wifi. Hal ini juga membantu pengguna untuk mengendalikan perangkat smart home hanya dengan smartphone dan memanfaatkan teknologi wifi. Hasil dalam penelitian ini yaitu 223 volt ampere meter dengan arus 1 sebesar 0,03 dan arus 2 sebesar 3,29. Rata-rata waktu dalam penyusutan tegangan sebesar 1,66 detik. Dengan Smart Electric Terminal berbasis Internet of Things kita dapat melakukan pemantauan dan pengendalian penggunaan listrik di rumah kita. Microcontroller NodeMCU dan Arduino Nano dilengkapi dengan dua Sensor Arus ACS712 dan Sensor SCT013 dengan tambahan satu Sensor Tegangan ZMPT1018 memudahkan pengguna untuk mengatur dan memantau pergerakan aktivitas listrik di rumah. Tidak hanya itu Smart Electric Terminal dilengkapi dengan Modul Relay yang dimana dapat memutus arus listrik yang berlebih.","PeriodicalId":259537,"journal":{"name":"JOINTECS (Journal of Information Technology and Computer Science)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123489137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analisis Sentimen Calon Presiden 2024 Menggunakan Algoritma SVM Pada Media Sosial Twitter
Pub Date : 2023-03-19 DOI: 10.31328/jointecs.v8i1.4265
Aprilia Putri Nardilasari, A. Hananto, Shofa Shofiah Hilabi, Tukino Tukino, Bayu Priyatna
Stakeholders widely use sentiment analysis in assessing sentiment towards an object. In this research, the object to be taken is sentiment analysis of political figures for the 2024 presidential candidate which is being widely discussed by netizens, especially on Twitter. The issues raised are regarding the performance measurement of an algorithm in classifying sentiments, some algorithms often need a higher level of accuracy. This study aims to improve performance measures from previous studies using the Naïve Bayes algorithm which has a fairly low level of accuracy, and in this study the SVM algorithm was used. This study takes Twitter data related to presidential candidates to see public opinion for each presidential candidate. The data taken was Twitter data with the keywords Ganjar, Anies, Prabowo totaling 8,959 data taken on October 17-25 2022. The results of the test concluded that the SVM algorithm has a performance measure or quite high accuracy compared to the Naïve Bayes algorithm in previous studies only of 73.86% while the SVM algorithm gets an average accuracy value of 98.61%, namely the Ganjar Pranowo dataset, then 98.81% precision, 99.79% recall. And for the proportion of sentiment, the positive sentiment obtained by Ganjar was higher than the other presidential candidates, namely 55%, Prabowo 30% and Anies 15%, while Anies' negative sentiment was 89% higher than Ganjar 8% and Prabowo 3%.
利益相关者广泛使用情感分析来评估对对象的情感。在本研究中,要采取的对象是在网民,特别是推特上广泛讨论的2024年总统候选人的政治人物的情绪分析。提出的问题是关于情感分类算法的性能测量,一些算法通常需要更高的准确性。本研究旨在利用Naïve贝叶斯算法改进以往研究中的性能指标,该算法的准确率水平相对较低,本研究中使用了SVM算法。这项研究利用与总统候选人相关的Twitter数据来了解每位总统候选人的民意。采集的数据是Twitter数据,关键词为Ganjar, Anies, Prabowo,总计8,959个数据,采集时间为2022年10月17日至25日。测试结果表明,与以往研究中Naïve Bayes算法相比,SVM算法的准确率仅为73.86%,而SVM算法的平均准确率为98.61%,即在Ganjar Pranowo数据集上,准确率为98.81%,召回率为99.79%。在情绪比例上,甘贾尔的正面情绪高于其他总统候选人,为55%,普拉博沃为30%,安尼斯为15%,而安尼斯的负面情绪比甘贾尔的8%和普拉博沃的3%高89%。
{"title":"Analisis Sentimen Calon Presiden 2024 Menggunakan Algoritma SVM Pada Media Sosial Twitter","authors":"Aprilia Putri Nardilasari, A. Hananto, Shofa Shofiah Hilabi, Tukino Tukino, Bayu Priyatna","doi":"10.31328/jointecs.v8i1.4265","DOIUrl":"https://doi.org/10.31328/jointecs.v8i1.4265","url":null,"abstract":"Stakeholders widely use sentiment analysis in assessing sentiment towards an object. In this research, the object to be taken is sentiment analysis of political figures for the 2024 presidential candidate which is being widely discussed by netizens, especially on Twitter. The issues raised are regarding the performance measurement of an algorithm in classifying sentiments, some algorithms often need a higher level of accuracy. This study aims to improve performance measures from previous studies using the Naïve Bayes algorithm which has a fairly low level of accuracy, and in this study the SVM algorithm was used. This study takes Twitter data related to presidential candidates to see public opinion for each presidential candidate. The data taken was Twitter data with the keywords Ganjar, Anies, Prabowo totaling 8,959 data taken on October 17-25 2022. The results of the test concluded that the SVM algorithm has a performance measure or quite high accuracy compared to the Naïve Bayes algorithm in previous studies only of 73.86% while the SVM algorithm gets an average accuracy value of 98.61%, namely the Ganjar Pranowo dataset, then 98.81% precision, 99.79% recall. And for the proportion of sentiment, the positive sentiment obtained by Ganjar was higher than the other presidential candidates, namely 55%, Prabowo 30% and Anies 15%, while Anies' negative sentiment was 89% higher than Ganjar 8% and Prabowo 3%.","PeriodicalId":259537,"journal":{"name":"JOINTECS (Journal of Information Technology and Computer Science)","volume":"327 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115657597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Izin Ekspor Impor Hasil Pertanian Berbasis Web Menggunakan Algoritma ID3 使用ID3算法获得基于Web的作物进出口许可证
Pub Date : 2023-03-19 DOI: 10.31328/jointecs.v8i1.4231
Izin Ekspor, Impor Hasil, Pertanian Berbasis, Web Menggunakan, Algoritma ID3, Asmah Akhriana, Nurcholis Salman, Andi Irmayana, Abdul Rauf, Arini Fitramayanti, Gusti Made, Apriantama Nugraha, Balai Besar, Karantina Pertanian Makassar
Makassar Agricultural Quarantine Center is one of the Technical Implementation Units (UPT) of the Agricultural Quarantine Agency. So far, in the process of granting export/import permits, each file must go through a process of checking and evaluating where the process of checking the file takes quite a long time because it is done manually and there are many files to be processed because they cover all agricultural companies in South Sulawesi. This study aims to create an application for granting export/import permits for agricultural products by implementing the Iterative Dichotomizer Three (ID3) algorithm. Research methods for system development using UML including use case diagrams and class diagrams with functionality testing using the blackbox method and for feasibility testing and user satisfaction using the SUS (System Usability Scale) method. The results of this study are a web-based application for granting export/import permits for agricultural products that can facilitate checking and evaluating files in the process of granting export-import permits, can be used as a medium for companies in managing export-import permits for agricultural products so that they become more effective and efficient. Meanwhile, from the results of the calculation of the SUS value, a value of 79.75 is obtained where this value is included in the acceptable category with the adjective Ratings excellent for grade scale B, which means that this application is accepted and suitable for use by users with a good application rating.
望加锡农业检疫中心是农业检疫局技术实施单位之一。到目前为止,在授予出口/进口许可证的过程中,每个文件都必须经过一个检查和评估的过程,检查文件的过程需要很长时间,因为它是手工完成的,而且有很多文件需要处理,因为它们涵盖了南苏拉威西的所有农业公司。本研究旨在利用迭代二分类器三(ID3)算法创建农产品进出口许可申请。研究使用UML进行系统开发的方法,包括使用黑盒方法进行功能测试的用例图和类图,以及使用SUS(系统可用性量表)方法进行可行性测试和用户满意度测试。本研究的成果是建立一个基于网络的农产品进出口许可证发放申请系统,方便在发放进出口许可证的过程中对文件进行检查和评估,可作为企业管理农产品进出口许可证的一种媒介,使其更加有效和高效。同时,从SUS值的计算结果来看,该值为79.75,其中该值属于可接受的类别,形容词为评级优秀,等级为B,这意味着该应用程序被接受并适合具有良好应用程序评级的用户使用。
{"title":"Izin Ekspor Impor Hasil Pertanian Berbasis Web Menggunakan Algoritma ID3","authors":"Izin Ekspor, Impor Hasil, Pertanian Berbasis, Web Menggunakan, Algoritma ID3, Asmah Akhriana, Nurcholis Salman, Andi Irmayana, Abdul Rauf, Arini Fitramayanti, Gusti Made, Apriantama Nugraha, Balai Besar, Karantina Pertanian Makassar","doi":"10.31328/jointecs.v8i1.4231","DOIUrl":"https://doi.org/10.31328/jointecs.v8i1.4231","url":null,"abstract":"Makassar Agricultural Quarantine Center is one of the Technical Implementation Units (UPT) of the Agricultural Quarantine Agency. So far, in the process of granting export/import permits, each file must go through a process of checking and evaluating where the process of checking the file takes quite a long time because it is done manually and there are many files to be processed because they cover all agricultural companies in South Sulawesi. This study aims to create an application for granting export/import permits for agricultural products by implementing the Iterative Dichotomizer Three (ID3) algorithm. Research methods for system development using UML including use case diagrams and class diagrams with functionality testing using the blackbox method and for feasibility testing and user satisfaction using the SUS (System Usability Scale) method. The results of this study are a web-based application for granting export/import permits for agricultural products that can facilitate checking and evaluating files in the process of granting export-import permits, can be used as a medium for companies in managing export-import permits for agricultural products so that they become more effective and efficient. Meanwhile, from the results of the calculation of the SUS value, a value of 79.75 is obtained where this value is included in the acceptable category with the adjective Ratings excellent for grade scale B, which means that this application is accepted and suitable for use by users with a good application rating.","PeriodicalId":259537,"journal":{"name":"JOINTECS (Journal of Information Technology and Computer Science)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115763426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Klasifikasi Citra Daun Anggur Menggunakan SVM Kernel Linear 将葡萄叶分类使用SVM内核
Pub Date : 2023-03-19 DOI: 10.31328/jointecs.v8i1.4496
A. G. Sooai, P. A. Nani, N. M. R. Mamulak, Corazon Olivia Sianturi, Shine Crossifixio Sianturi, Alicia Herlin Mondolang
The use of artificial intelligence for the image recognition process has been carried out by many researchers. One of its fields is to recognize diseases of grape leaves. Modeling has been carried out using augmentation before support vector machine classification with kernel cubic, with 97.6% accuracy. Improved performance of image prediction accuracy through modeling can still be improved through various means. Some techniques that can be used include using feature selection, initial processing to find and discard outliers, or selecting classifier algorithms that are specifically able to handle datasets with certain characteristics. Another technique is to pass images in the feature extraction process to obtain models with relatively higher accuracy than previous studies. This study aims to improve the acquisition of accuracy figures using the help of the feature extraction process, as well as comparing the performance of several classifiers, namely k-Nearest Neighbor, Random Forest, Naïve Bayes, Neural Network, and Support Vector Machine. The method used starts from the feature extraction process utilizing the SqueezNet algorithm to obtain a dataset with a specific composition. Furthermore, the division of training and test data was carried out with a ratio of 60:40. Data training uses a variety of validated classifiers using 2-fold cross-validation. The data used is a secondary dataset of grape leaves, consisting of 7222 leaf images, divided into four validated classes from related studies. The results obtained outperformed the previous study, namely 98.1% on the Support Vector Machine classifier using linear kernels.
人工智能在图像识别过程中的应用已经被许多研究者所开展。它的一个领域是识别葡萄叶片的疾病。在核立方支持向量机分类前进行增强建模,准确率达到97.6%。通过建模来提高图像预测精度的性能,仍然可以通过各种手段来提高。可以使用的一些技术包括使用特征选择,初始处理来查找和丢弃异常值,或者选择能够处理具有特定特征的数据集的分类器算法。另一种方法是在特征提取过程中对图像进行传递,获得比以往研究精度更高的模型。本研究旨在利用特征提取过程提高准确率数据的获取,并比较几种分类器的性能,分别是k-最近邻、随机森林、Naïve贝叶斯、神经网络和支持向量机。所使用的方法从特征提取过程开始,利用SqueezNet算法获得具有特定组成的数据集。并以60:40的比例对训练数据和测试数据进行分割。数据训练使用各种经过验证的分类器,使用2倍交叉验证。使用的数据是葡萄叶片二级数据集,由7222张叶片图像组成,从相关研究中分为4个经过验证的类。所获得的结果优于之前的研究,使用线性核的支持向量机分类器达到98.1%。
{"title":"Klasifikasi Citra Daun Anggur Menggunakan SVM Kernel Linear","authors":"A. G. Sooai, P. A. Nani, N. M. R. Mamulak, Corazon Olivia Sianturi, Shine Crossifixio Sianturi, Alicia Herlin Mondolang","doi":"10.31328/jointecs.v8i1.4496","DOIUrl":"https://doi.org/10.31328/jointecs.v8i1.4496","url":null,"abstract":"The use of artificial intelligence for the image recognition process has been carried out by many researchers. One of its fields is to recognize diseases of grape leaves. Modeling has been carried out using augmentation before support vector machine classification with kernel cubic, with 97.6% accuracy. Improved performance of image prediction accuracy through modeling can still be improved through various means. Some techniques that can be used include using feature selection, initial processing to find and discard outliers, or selecting classifier algorithms that are specifically able to handle datasets with certain characteristics. Another technique is to pass images in the feature extraction process to obtain models with relatively higher accuracy than previous studies. This study aims to improve the acquisition of accuracy figures using the help of the feature extraction process, as well as comparing the performance of several classifiers, namely k-Nearest Neighbor, Random Forest, Naïve Bayes, Neural Network, and Support Vector Machine. The method used starts from the feature extraction process utilizing the SqueezNet algorithm to obtain a dataset with a specific composition. Furthermore, the division of training and test data was carried out with a ratio of 60:40. Data training uses a variety of validated classifiers using 2-fold cross-validation. The data used is a secondary dataset of grape leaves, consisting of 7222 leaf images, divided into four validated classes from related studies. The results obtained outperformed the previous study, namely 98.1% on the Support Vector Machine classifier using linear kernels.","PeriodicalId":259537,"journal":{"name":"JOINTECS (Journal of Information Technology and Computer Science)","volume":"86 2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125923326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
JOINTECS (Journal of Information Technology and Computer Science)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1