Fisher Information as a Utility Metric for Frequency Estimation under Local Differential Privacy

Milan Lopuhaä-Zwakenberg, B. Škorić, Ninghui Li
{"title":"Fisher Information as a Utility Metric for Frequency Estimation under Local Differential Privacy","authors":"Milan Lopuhaä-Zwakenberg, B. Škorić, Ninghui Li","doi":"10.1145/3559613.3563194","DOIUrl":null,"url":null,"abstract":"Local Differential Privacy (LDP) is the de facto standard technique to ensure privacy for users whose data is collected by a data aggregator they do not necessarily trust. This necessarily involves a tradeoff between user privacy and aggregator utility, and an important question is to optimize utility (under a given metric) for a given privacy level. Unfortunately, existing utility metrics are either hard to optimize for, or they only indirectly relate to an aggregator's goal, leading to theoretically optimal protocols that are unsuitable in practice. In this paper, we introduce a new utility metric for when the aggregator tries to estimate the true data's distribution in a finite set. The new metric is based on Fisher information, which expresses the aggregators information gain through the protocol. We show that this metric relates to other utility metrics such as estimator accuracy and mutual information and to the LDP parameter \\varepsilon. Furthermore, we show that under this metric, we can approximate the optimal protocols as \\varepsilon \\rightarrow 0 and \\varepsilon \\rightarrow \\infty, and we show how the optimal protocol can be found for a fixed \\varepsilon, although the latter is computationally infeasible for large input spaces.","PeriodicalId":416548,"journal":{"name":"Proceedings of the 21st Workshop on Privacy in the Electronic Society","volume":"238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st Workshop on Privacy in the Electronic Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3559613.3563194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Local Differential Privacy (LDP) is the de facto standard technique to ensure privacy for users whose data is collected by a data aggregator they do not necessarily trust. This necessarily involves a tradeoff between user privacy and aggregator utility, and an important question is to optimize utility (under a given metric) for a given privacy level. Unfortunately, existing utility metrics are either hard to optimize for, or they only indirectly relate to an aggregator's goal, leading to theoretically optimal protocols that are unsuitable in practice. In this paper, we introduce a new utility metric for when the aggregator tries to estimate the true data's distribution in a finite set. The new metric is based on Fisher information, which expresses the aggregators information gain through the protocol. We show that this metric relates to other utility metrics such as estimator accuracy and mutual information and to the LDP parameter \varepsilon. Furthermore, we show that under this metric, we can approximate the optimal protocols as \varepsilon \rightarrow 0 and \varepsilon \rightarrow \infty, and we show how the optimal protocol can be found for a fixed \varepsilon, although the latter is computationally infeasible for large input spaces.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
局部差分隐私下频率估计的Fisher信息效用度量
本地差分隐私(LDP)是一种事实上的标准技术,用于确保数据由用户不一定信任的数据聚合器收集的用户的隐私。这必然涉及到用户隐私和聚合器实用程序之间的权衡,一个重要的问题是为给定的隐私级别优化实用程序(在给定指标下)。不幸的是,现有的效用指标要么很难优化,要么它们只是间接地与聚合器的目标相关,从而导致理论上最优的协议在实践中不适合。在本文中,我们引入了一种新的效用度量,用于聚合器在有限集合中估计真实数据的分布。新度量基于Fisher信息,Fisher信息表示聚合器通过协议获得的信息。我们表明,该度量与其他实用度量相关,如估计器精度和互信息以及LDP参数\varepsilon。此外,我们表明,在这个度量下,我们可以将最优协议近似为\varepsilon\rightarrow 0和\varepsilon\rightarrow\infty,并且我们展示了如何为固定\varepsilon找到最优协议,尽管后者在计算上对于大输入空间是不可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Darwin's Theory of Censorship: Analysing the Evolution of Censored Topics with Dynamic Topic Models PRSONA Tracking the Evolution of Cookie-based Tracking on Facebook Fingerprinting and Personal Information Leakage from Touchscreen Interactions Privacy and Security Evaluation of Mobile Payment Applications Through User-Generated Reviews
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1