A study of the thermal characteristics of a conductive adhesive chip attach process

S. Sathe, B. Sammakia, R. Kodnani, M. Gaynes
{"title":"A study of the thermal characteristics of a conductive adhesive chip attach process","authors":"S. Sathe, B. Sammakia, R. Kodnani, M. Gaynes","doi":"10.1109/ECTC.1997.606325","DOIUrl":null,"url":null,"abstract":"Electrically conductive adhesives (ECAs) have been proposed as an alternative to solder in the surface mount (SMT) and flip chip attach (FCA) applications. This paper describes the development of a transient heat transfer model of a chip bonding process using the ECA bumps. The chip is heated using a top thermode directly contacting the chip and the card is heated from the back side (Z=0) using a heater. A detailed three-dimensional heat transfer model to account for the conduction, heat storage and convection and radiation from the card is developed using the finite volume technique. The spatial and temporal temperature distributions are studied through initial ramp-up, dwell and cool-down processes. It is seen that the bump temperatures are dominated and controlled by the heating process near the chip as opposed to heating the back side of the card. The numerical model is verified via actual measurements and the agreement is within 15 percent.","PeriodicalId":339633,"journal":{"name":"1997 Proceedings 47th Electronic Components and Technology Conference","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1997 Proceedings 47th Electronic Components and Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.1997.606325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Electrically conductive adhesives (ECAs) have been proposed as an alternative to solder in the surface mount (SMT) and flip chip attach (FCA) applications. This paper describes the development of a transient heat transfer model of a chip bonding process using the ECA bumps. The chip is heated using a top thermode directly contacting the chip and the card is heated from the back side (Z=0) using a heater. A detailed three-dimensional heat transfer model to account for the conduction, heat storage and convection and radiation from the card is developed using the finite volume technique. The spatial and temporal temperature distributions are studied through initial ramp-up, dwell and cool-down processes. It is seen that the bump temperatures are dominated and controlled by the heating process near the chip as opposed to heating the back side of the card. The numerical model is verified via actual measurements and the agreement is within 15 percent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
导电粘接芯片贴附工艺的热特性研究
导电胶粘剂(ECAs)已被提出作为表面贴装(SMT)和倒装芯片贴装(FCA)应用中焊料的替代品。本文描述了利用ECA凸点的芯片键合过程的瞬态传热模型的发展。芯片使用直接接触芯片的顶部热模加热,卡使用加热器从背面(Z=0)加热。利用有限体积技术建立了一个详细的三维传热模型,以考虑卡片的传导,蓄热以及对流和辐射。通过初始升温、停留和冷却过程研究了温度的时空分布。可以看出,凸起温度是由芯片附近的加热过程主导和控制的,而不是加热卡的背面。通过实测验证了数值模型的正确性,一致性在15%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High density optical interconnects for board and backplane applications using VCSELs and polymer waveguides Evaluation of plastic package delamination via reliability testing and fracture mechanics approach Mid-frequency simultaneous switching noise in computer systems Distance learning paradigms in electronics packaging: a national course on thermal design of electronic products Mechanical and electrical characterization of a dendrite connector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1