Synthesizing an instruction selection rule library from semantic specifications

Sebastian Buchwald, Andreas Fried, Sebastian Hack
{"title":"Synthesizing an instruction selection rule library from semantic specifications","authors":"Sebastian Buchwald, Andreas Fried, Sebastian Hack","doi":"10.1145/3168821","DOIUrl":null,"url":null,"abstract":"Instruction selection is the part of a compiler that transforms intermediate representation (IR) code into machine code. Instruction selectors build on a library of hundreds if not thousands of rules. Creating and maintaining these rules is a tedious and error-prone manual process. In this paper, we present a fully automatic approach to create provably correct rule libraries from formal specifications of the instruction set architecture and the compiler IR. We use a hybrid approach that combines enumerative techniques with template-based counterexample-guided inductive synthesis (CEGIS). Thereby, we overcome several shortcomings of existing approaches, which were not able to handle complex instructions in a reasonable amount of time. In particular, we efficiently model memory operations. Our tool synthesized a large part of the integer arithmetic rules for the x86 architecture within a few days where existing techniques could not deliver a substantial rule library within weeks. Using the rule library, we generate a prototype instruction selector that produces code on par with a manually-tuned instruction selector. Furthermore, using 63012 test cases generated from the rule library, we identified 29498 rules that both Clang and GCC miss.","PeriodicalId":103558,"journal":{"name":"Proceedings of the 2018 International Symposium on Code Generation and Optimization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Symposium on Code Generation and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3168821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Instruction selection is the part of a compiler that transforms intermediate representation (IR) code into machine code. Instruction selectors build on a library of hundreds if not thousands of rules. Creating and maintaining these rules is a tedious and error-prone manual process. In this paper, we present a fully automatic approach to create provably correct rule libraries from formal specifications of the instruction set architecture and the compiler IR. We use a hybrid approach that combines enumerative techniques with template-based counterexample-guided inductive synthesis (CEGIS). Thereby, we overcome several shortcomings of existing approaches, which were not able to handle complex instructions in a reasonable amount of time. In particular, we efficiently model memory operations. Our tool synthesized a large part of the integer arithmetic rules for the x86 architecture within a few days where existing techniques could not deliver a substantial rule library within weeks. Using the rule library, we generate a prototype instruction selector that produces code on par with a manually-tuned instruction selector. Furthermore, using 63012 test cases generated from the rule library, we identified 29498 rules that both Clang and GCC miss.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于语义规范合成指令选择规则库
指令选择是编译器将中间表示(IR)代码转换为机器代码的一部分。指令选择器建立在包含数百甚至数千条规则的库之上。创建和维护这些规则是一个繁琐且容易出错的手动过程。在本文中,我们提出了一种基于指令集体系结构和编译器IR的形式化规范来创建可证明正确的规则库的全自动方法。我们使用一种混合方法,将枚举技术与基于模板的反例引导归纳合成(CEGIS)相结合。因此,我们克服了现有方法的几个缺点,即不能在合理的时间内处理复杂的指令。特别是,我们有效地为内存操作建模。我们的工具在几天内合成了x86体系结构的大部分整数算术规则,而现有技术无法在几周内交付大量规则库。使用规则库,我们生成一个原型指令选择器,它产生的代码与手动调优的指令选择器相当。此外,使用从规则库生成的63012个测试用例,我们确定了Clang和GCC都遗漏的29498条规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High performance stencil code generation with Lift DeLICM: scalar dependence removal at zero memory cost Local memory-aware kernel perforation Analyzing and optimizing task granularity on the JVM Lightweight detection of cache conflicts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1