1.1 Deep Learning Hardware: Past, Present, and Future

Yann LeCun
{"title":"1.1 Deep Learning Hardware: Past, Present, and Future","authors":"Yann LeCun","doi":"10.1109/ISSCC.2019.8662396","DOIUrl":null,"url":null,"abstract":"Historically, progress in neural networks and deep learning research has been greatly influenced by the available hardware and software tools. This paper identifies trends in deep learning research that will influence hardware architectures and software platforms of the future.","PeriodicalId":265551,"journal":{"name":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2019.8662396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89

Abstract

Historically, progress in neural networks and deep learning research has been greatly influenced by the available hardware and software tools. This paper identifies trends in deep learning research that will influence hardware architectures and software platforms of the future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
1.1深度学习硬件:过去、现在和未来
从历史上看,神经网络和深度学习研究的进展很大程度上受到可用硬件和软件工具的影响。本文确定了将影响未来硬件架构和软件平台的深度学习研究趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
27.2 An Adiabatic Sense and Set Rectifier for Improved Maximum-Power-Point Tracking in Piezoelectric Harvesting with 541% Energy Extraction Gain 22.7 A Programmable Wireless EEG Monitoring SoC with Open/Closed-Loop Optogenetic and Electrical Stimulation for Epilepsy Control 2.5 A 40×40 Four-Neighbor Time-Based In-Memory Computing Graph ASIC Chip Featuring Wavefront Expansion and 2D Gradient Control 11.2 A CMOS Biosensor Array with 1024 3-Electrode Voltammetry Pixels and 93dB Dynamic Range 11.3 A Capacitive Biosensor for Cancer Diagnosis Using a Functionalized Microneedle and a 13.7b-Resolution Capacitance-to-Digital Converter from 1 to 100nF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1