{"title":"Semi-Nonparametric Estimation of Random Coefficient Logit Model for Aggregate Demand","authors":"Zhentong Lu, Xiaoxia Shi, Jing Tao","doi":"10.2139/ssrn.3503560","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a two-step semi-nonparametric estimator for the widely used random coefficient logit demand model. In the first step, exploiting the structure of logit choice probabilities, we transform the full demand system into a partial linear model and estimate the fixed (non-random) coefficients using standard linear sieve generalized method of moment (GMM). In the second step, we construct a sieve minimum distance (MD) estimator to uncover the distribution of random coefficients nonparametrically. We establish the asymptotic properties of the estimator and show the semi-nonparametric identification of the model in a large market environment. Monte Carlo simulations and empirical illustrations support the theoretical results and demonstrate the usefulness of our estimator in practice.","PeriodicalId":264857,"journal":{"name":"ERN: Semiparametric & Nonparametric Methods (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Semiparametric & Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3503560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In this paper, we propose a two-step semi-nonparametric estimator for the widely used random coefficient logit demand model. In the first step, exploiting the structure of logit choice probabilities, we transform the full demand system into a partial linear model and estimate the fixed (non-random) coefficients using standard linear sieve generalized method of moment (GMM). In the second step, we construct a sieve minimum distance (MD) estimator to uncover the distribution of random coefficients nonparametrically. We establish the asymptotic properties of the estimator and show the semi-nonparametric identification of the model in a large market environment. Monte Carlo simulations and empirical illustrations support the theoretical results and demonstrate the usefulness of our estimator in practice.