Chen Zhang, Bin Duan, Cheng Fu, Jinqiu Song, C. Zhang
{"title":"Command-filtered Backstepping Control for Single-phase NPC Rectifier","authors":"Chen Zhang, Bin Duan, Cheng Fu, Jinqiu Song, C. Zhang","doi":"10.1109/CVCI51460.2020.9338546","DOIUrl":null,"url":null,"abstract":"Single-phase neutral point clamped rectifier (SP-NPCR) is getting much interest in 10 kV electric vehicle (EV) charging DC systems due to its low voltage stress on power switches. In order to achieve good tracking performance and anti-disturbance ability, a robust command-filtered backstepping control strategy of the SP-NPCR is proposed in this paper. Firstly, based on the SP-NPCR model in dq frame, the command-filtered backstepping controller is constructed, which compose of the output voltage controller and the reactive current controller. The command filter is used to meet the requirement of analytic differentiation of the virtual controller and simplify the controller structure. Then, the global stabilization of the SP-NPCR is conducted and proved by the Lyapunov stability theory. The simulation for SP-NPCR has been carried out to demonstrate that the proposed system has better dynamic property and robustness compared with the conventional proportional- Integral method.","PeriodicalId":119721,"journal":{"name":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVCI51460.2020.9338546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Single-phase neutral point clamped rectifier (SP-NPCR) is getting much interest in 10 kV electric vehicle (EV) charging DC systems due to its low voltage stress on power switches. In order to achieve good tracking performance and anti-disturbance ability, a robust command-filtered backstepping control strategy of the SP-NPCR is proposed in this paper. Firstly, based on the SP-NPCR model in dq frame, the command-filtered backstepping controller is constructed, which compose of the output voltage controller and the reactive current controller. The command filter is used to meet the requirement of analytic differentiation of the virtual controller and simplify the controller structure. Then, the global stabilization of the SP-NPCR is conducted and proved by the Lyapunov stability theory. The simulation for SP-NPCR has been carried out to demonstrate that the proposed system has better dynamic property and robustness compared with the conventional proportional- Integral method.