A Novel Digital Architecture for Gain and Phase Measurements for DC-DC Converters

Sameer Arora, P. Balsara, D. Bhatia, P. Buck
{"title":"A Novel Digital Architecture for Gain and Phase Measurements for DC-DC Converters","authors":"Sameer Arora, P. Balsara, D. Bhatia, P. Buck","doi":"10.1109/DCAS.2018.8620178","DOIUrl":null,"url":null,"abstract":"The proposed gain and phase (GAP) measurement architecture is a digitally-implemented device, which is used to measure the gain and phase of DC-DC voltage converters. The device excites the system under test with a small-signal sinusoidal test signal and measures both the time histories of the test signal and the response signal. The device sweeps different frequency points using the direct-digital-synthesis (DDS) technique. Further, to achieve a wide dynamic range, the phase and amplitude response (Bode plot) are calculated using the Lock-in amplifier technique. The device has the flexibility of sampling the response in either the off-time, the on-time or at any other time (average) sampling of the power switch for the DC-DC converter. Furthermore, the proposed system is integrated with a graphical user interface (GUI) which communicates with the device. Through the GUI the user may select to perform measurements such as the transfer function of the plant, the open loop and the closed loop of the controller, measurement of audio susceptibility, total harmonic distortion and noise (THD+N) and ripple spectrum. The GUI can also be used to design a Pulse Width Modulation (PWM) linear controller on the fly, estimating the open loop response T(s), the closed loop response T(s)/(1+T(s)) and the inverse loop response 1/T(s). Analysis of the proposed system is provided, alongside with various applications and experimental results.","PeriodicalId":320317,"journal":{"name":"2018 IEEE 13th Dallas Circuits and Systems Conference (DCAS)","volume":"194-199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 13th Dallas Circuits and Systems Conference (DCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCAS.2018.8620178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The proposed gain and phase (GAP) measurement architecture is a digitally-implemented device, which is used to measure the gain and phase of DC-DC voltage converters. The device excites the system under test with a small-signal sinusoidal test signal and measures both the time histories of the test signal and the response signal. The device sweeps different frequency points using the direct-digital-synthesis (DDS) technique. Further, to achieve a wide dynamic range, the phase and amplitude response (Bode plot) are calculated using the Lock-in amplifier technique. The device has the flexibility of sampling the response in either the off-time, the on-time or at any other time (average) sampling of the power switch for the DC-DC converter. Furthermore, the proposed system is integrated with a graphical user interface (GUI) which communicates with the device. Through the GUI the user may select to perform measurements such as the transfer function of the plant, the open loop and the closed loop of the controller, measurement of audio susceptibility, total harmonic distortion and noise (THD+N) and ripple spectrum. The GUI can also be used to design a Pulse Width Modulation (PWM) linear controller on the fly, estimating the open loop response T(s), the closed loop response T(s)/(1+T(s)) and the inverse loop response 1/T(s). Analysis of the proposed system is provided, alongside with various applications and experimental results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于DC-DC变换器增益和相位测量的新型数字结构
本文提出的增益与相位(GAP)测量架构是一种数字化实现的器件,用于测量DC-DC电压变换器的增益与相位。该装置用小信号正弦测试信号激励被测系统,并测量测试信号和响应信号的时间历程。该装置采用直接数字合成(DDS)技术扫描不同的频率点。此外,为了实现更宽的动态范围,相位和幅度响应(波德图)是使用锁相放大器技术计算的。该器件具有在DC-DC变换器电源开关的关断时间、导通时间或任何其他时间(平均)采样响应的灵活性。此外,该系统还集成了与设备通信的图形用户界面(GUI)。通过图形用户界面,用户可以选择进行测量,如工厂的传递函数、控制器的开环和闭环、音频磁化率、总谐波失真和噪声(THD+N)和纹波谱的测量。GUI还可以用于动态设计脉宽调制(PWM)线性控制器,估计开环响应T(s)、闭环响应T(s)/(1+T(s))和逆环响应1/T(s)。给出了系统的分析,以及各种应用和实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Differential Low-Power Voltage-Clamped ISFET Topology for Biomedical Applications Memory Optimization Techniques for FPGA based CNN Implementations Dual-Path Component Based Digital Receiver Linearization With a Very Non-linear Auxiliary Path Biomimetic, Soft-Material Synapse for Neuromorphic Computing: from Device to Network A Broadband Spectrum Channelizer with PWM-LO Based Sub-Band Equalization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1