{"title":"Communication-aware Distributed Gaussian Process Regression Algorithms for Real-time Machine Learning","authors":"Zhenyuan Yuan, Minghui Zhu","doi":"10.23919/ACC45564.2020.9147886","DOIUrl":null,"url":null,"abstract":"We propose a communication-aware Gaussian process regression algorithm that allows a network of robots to collaboratively learn about a common latent function in real time using streaming data. We quantify the improvement that inter-robot communication brings on the transient performance of the learning algorithm. Simulations are performed to validate the proposed algorithm.","PeriodicalId":288450,"journal":{"name":"2020 American Control Conference (ACC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC45564.2020.9147886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
We propose a communication-aware Gaussian process regression algorithm that allows a network of robots to collaboratively learn about a common latent function in real time using streaming data. We quantify the improvement that inter-robot communication brings on the transient performance of the learning algorithm. Simulations are performed to validate the proposed algorithm.