{"title":"EFCAD — An Embedded FPGA CAD Tool Flow for Enabling On-chip Self-Compilation","authors":"K. Pham, Malte Vesper, Dirk Koch, Eddie Hung","doi":"10.1109/FCCM.2019.00011","DOIUrl":null,"url":null,"abstract":"This paper combines a chain of academic tools to form an FPGA compilation flow for building partially reconfigurable modules on lightweight embedded platforms. Our flow — EFCAD — supports the entire stack from RTL (Verilog) to (partial) bitstream, and we demonstrate early results from the onchip ARM processor of, and targeting, the latest 16nm generation of a Zynq UltraScale+ MPSoC device. With this, we complement Xilinx's PYNQ initiative to not only facilitate System-on-Chip research and education entirely within an embedded system, but also to allow building new and specialising existing customcomputing accelerators without needing access to a workstation.","PeriodicalId":116955,"journal":{"name":"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2019.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper combines a chain of academic tools to form an FPGA compilation flow for building partially reconfigurable modules on lightweight embedded platforms. Our flow — EFCAD — supports the entire stack from RTL (Verilog) to (partial) bitstream, and we demonstrate early results from the onchip ARM processor of, and targeting, the latest 16nm generation of a Zynq UltraScale+ MPSoC device. With this, we complement Xilinx's PYNQ initiative to not only facilitate System-on-Chip research and education entirely within an embedded system, but also to allow building new and specialising existing customcomputing accelerators without needing access to a workstation.