Ferdous Shaun, Massimo Pellegrino, W. Cesar, F. Marty, Zhifei Xu, M. Capo-Chichi, P. Basset, B. Lebental, T. Bourouina
{"title":"Robust multi-parameter sensing probe for water monitoring based on ALD-coated metallic micro-patterns","authors":"Ferdous Shaun, Massimo Pellegrino, W. Cesar, F. Marty, Zhifei Xu, M. Capo-Chichi, P. Basset, B. Lebental, T. Bourouina","doi":"10.1109/NEMS.2016.7758263","DOIUrl":null,"url":null,"abstract":"We report on a multi-sensing probe for water network monitoring enabling simultaneous measurements of water electrical conductivity, flow-rate and temperature. A very simple fabrication process is used where all physical sensors are obtained only from micro-patterning of glass, combining platinum, gold. Further coating using Atomic Layer Deposition (ALD) is achieved for the purpose of reducing both electro-erosion and biofouling, while keeping the sensor's electrical and thermal functionalities. This is critical for long-term reliability of sensors immersed in water. The lateral size of each sensing elements does not exceed a few 100μm. This small footprint allowed implementing a redundancy strategy on the chip, not only for reliability purposes but also to accommodate for different measurement ranges based on scalable designs.","PeriodicalId":150449,"journal":{"name":"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2016.7758263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We report on a multi-sensing probe for water network monitoring enabling simultaneous measurements of water electrical conductivity, flow-rate and temperature. A very simple fabrication process is used where all physical sensors are obtained only from micro-patterning of glass, combining platinum, gold. Further coating using Atomic Layer Deposition (ALD) is achieved for the purpose of reducing both electro-erosion and biofouling, while keeping the sensor's electrical and thermal functionalities. This is critical for long-term reliability of sensors immersed in water. The lateral size of each sensing elements does not exceed a few 100μm. This small footprint allowed implementing a redundancy strategy on the chip, not only for reliability purposes but also to accommodate for different measurement ranges based on scalable designs.