Non-Euclidean Kalman Filters for Nonlinear Measurements

Samuel A. Shapero, P. Miceli
{"title":"Non-Euclidean Kalman Filters for Nonlinear Measurements","authors":"Samuel A. Shapero, P. Miceli","doi":"10.23919/fusion43075.2019.9011350","DOIUrl":null,"url":null,"abstract":"Target tracking in the presence of nonlinear measurements has long been recognized as a challenge. When measurements are in polar coordinates this sometimes manifests itself as the ‘contact lens’ distribution, especially in radar applications. The authors propose a new filtering paradigm - the Non-Euclidean Kalman Filter (NEUKF) - to efficiently represent these nonlinear distributions using isomorphic coordinate transforms, which requires only modest computation beyond the popular Unscented Kalman Filter. They propose a family of parabolic isomorphisms well suited for representing the contact lens distribution. The NEUKF using one of the parabolic transforms is compared to a number of other prominent filters in both single and multiple sensor scenarios. The NEUKF demonstrates either the best-in-class or competitive precision and accuracy across all four scenarios, and is the only filter to maintain near perfect covariance consistency at all times.","PeriodicalId":348881,"journal":{"name":"2019 22th International Conference on Information Fusion (FUSION)","volume":"131 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion43075.2019.9011350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Target tracking in the presence of nonlinear measurements has long been recognized as a challenge. When measurements are in polar coordinates this sometimes manifests itself as the ‘contact lens’ distribution, especially in radar applications. The authors propose a new filtering paradigm - the Non-Euclidean Kalman Filter (NEUKF) - to efficiently represent these nonlinear distributions using isomorphic coordinate transforms, which requires only modest computation beyond the popular Unscented Kalman Filter. They propose a family of parabolic isomorphisms well suited for representing the contact lens distribution. The NEUKF using one of the parabolic transforms is compared to a number of other prominent filters in both single and multiple sensor scenarios. The NEUKF demonstrates either the best-in-class or competitive precision and accuracy across all four scenarios, and is the only filter to maintain near perfect covariance consistency at all times.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性测量的非欧几里得卡尔曼滤波
存在非线性测量的目标跟踪一直被认为是一个挑战。当测量是在极坐标时,这有时表现为“隐形眼镜”分布,特别是在雷达应用中。作者提出了一种新的滤波范式-非欧几里得卡尔曼滤波器(NEUKF) -利用同构坐标变换有效地表示这些非线性分布,它只需要比流行的Unscented卡尔曼滤波器进行适度的计算。他们提出了一个很适合表示隐形眼镜分布的抛物线同构族。在单传感器和多传感器场景中,使用抛物变换的NEUKF与许多其他突出的滤波器进行了比较。NEUKF在所有四种情况下都具有同类最佳或具有竞争力的精度和准确性,并且是始终保持近乎完美协方差一致性的唯一过滤器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Continuum Detection and Predictive-Corrective Classification of Crack Networks Adaptive BM3D Algorithm for Image Denoising Using Coefficient of Variation A Latent Variable Model State Estimation System for Image Sequences Adaptive Approximate Bayesian Computational Particle Filters for Underwater Terrain Aided Navigation Pooling Tweets by Fine-Grained Emotions to Uncover Topic Trends in Social Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1