Instruction-level power consumption estimation embedded processors low-power applications

S. Nikolaidis, T. Laopoulos
{"title":"Instruction-level power consumption estimation embedded processors low-power applications","authors":"S. Nikolaidis, T. Laopoulos","doi":"10.1109/IDAACS.2001.941998","DOIUrl":null,"url":null,"abstract":"A power consumption measurement framework for embedded processing systems is presented in this work. Given an assembly or machine level program as input to this setup, the energy consumption of the specific program in the specific processing systems may be estimated. The instruction level power models are derived based on the power supply current measurement technique. The instantaneous variations of the power supply current provide the appropriate information for the accurate estimation of the power consumption at different operating situations of the processor (core) and of the overall processing system as well (consumption of peripheral units). The proposed instantaneous current measuring approach, along with the execution of special test programs for analysis of inter-instruction effects provides a clear insight into the power behavior of embedded processing systems.","PeriodicalId":419022,"journal":{"name":"Proceedings of the International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. IDAACS'2001 (Cat. No.01EX510)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. IDAACS'2001 (Cat. No.01EX510)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAACS.2001.941998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

A power consumption measurement framework for embedded processing systems is presented in this work. Given an assembly or machine level program as input to this setup, the energy consumption of the specific program in the specific processing systems may be estimated. The instruction level power models are derived based on the power supply current measurement technique. The instantaneous variations of the power supply current provide the appropriate information for the accurate estimation of the power consumption at different operating situations of the processor (core) and of the overall processing system as well (consumption of peripheral units). The proposed instantaneous current measuring approach, along with the execution of special test programs for analysis of inter-instruction effects provides a clear insight into the power behavior of embedded processing systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
指令级功耗估计嵌入式处理器低功耗应用
本文提出了一种嵌入式处理系统的功耗测量框架。给定一个装配或机器级程序作为该设置的输入,可以估计特定处理系统中特定程序的能耗。基于电源电流测量技术,推导了指令级功率模型。电源电流的瞬时变化为准确估计处理器(核心)和整个处理系统在不同操作情况下的功耗以及(外围设备的功耗)提供了适当的信息。所提出的瞬时电流测量方法,以及用于分析指令间效应的特殊测试程序的执行,为嵌入式处理系统的电源行为提供了清晰的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Web-based mobile medical monitoring system The new methods of switch mode power supply designing for computer facilities GMSK neural network based demodulator Development of a stand alone monitoring system (S.A.MO.S.) Measurement of SCI patient's buttock pressure on wheelchair and bed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1