MidasTouch: Monte-Carlo inference over distributions across sliding touch

Sudharshan Suresh, Zilin Si, Stuart Anderson, M. Kaess, Mustafa Mukadam
{"title":"MidasTouch: Monte-Carlo inference over distributions across sliding touch","authors":"Sudharshan Suresh, Zilin Si, Stuart Anderson, M. Kaess, Mustafa Mukadam","doi":"10.48550/arXiv.2210.14210","DOIUrl":null,"url":null,"abstract":"We present MidasTouch, a tactile perception system for online global localization of a vision-based touch sensor sliding on an object surface. This framework takes in posed tactile images over time, and outputs an evolving distribution of sensor pose on the object's surface, without the need for visual priors. Our key insight is to estimate local surface geometry with tactile sensing, learn a compact representation for it, and disambiguate these signals over a long time horizon. The backbone of MidasTouch is a Monte-Carlo particle filter, with a measurement model based on a tactile code network learned from tactile simulation. This network, inspired by LIDAR place recognition, compactly summarizes local surface geometries. These generated codes are efficiently compared against a precomputed tactile codebook per-object, to update the pose distribution. We further release the YCB-Slide dataset of real-world and simulated forceful sliding interactions between a vision-based tactile sensor and standard YCB objects. While single-touch localization can be inherently ambiguous, we can quickly localize our sensor by traversing salient surface geometries. Project page: https://suddhu.github.io/midastouch-tactile/","PeriodicalId":273870,"journal":{"name":"Conference on Robot Learning","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Robot Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.14210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We present MidasTouch, a tactile perception system for online global localization of a vision-based touch sensor sliding on an object surface. This framework takes in posed tactile images over time, and outputs an evolving distribution of sensor pose on the object's surface, without the need for visual priors. Our key insight is to estimate local surface geometry with tactile sensing, learn a compact representation for it, and disambiguate these signals over a long time horizon. The backbone of MidasTouch is a Monte-Carlo particle filter, with a measurement model based on a tactile code network learned from tactile simulation. This network, inspired by LIDAR place recognition, compactly summarizes local surface geometries. These generated codes are efficiently compared against a precomputed tactile codebook per-object, to update the pose distribution. We further release the YCB-Slide dataset of real-world and simulated forceful sliding interactions between a vision-based tactile sensor and standard YCB objects. While single-touch localization can be inherently ambiguous, we can quickly localize our sensor by traversing salient surface geometries. Project page: https://suddhu.github.io/midastouch-tactile/
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MidasTouch:滑动触摸分布的蒙特卡罗推断
我们提出了MidasTouch,一种用于在物体表面滑动的基于视觉的触摸传感器的在线全局定位的触觉感知系统。该框架接受姿势的触觉图像,并在物体表面输出传感器姿势的不断变化的分布,而不需要视觉先验。我们的关键见解是通过触觉感知来估计局部表面几何形状,学习它的紧凑表示,并在很长一段时间内消除这些信号的歧义。MidasTouch的核心是一个蒙特卡罗粒子滤波器,其测量模型基于从触觉仿真中学习到的触觉代码网络。该网络受激光雷达位置识别的启发,紧凑地总结了局部表面的几何形状。这些生成的代码有效地与预先计算的每个对象的触觉代码本进行比较,以更新姿态分布。我们进一步发布了基于视觉的触觉传感器和标准YCB物体之间真实世界和模拟的有力滑动相互作用的YCB- slide数据集。虽然单触定位本身就很模糊,但我们可以通过遍历显著的表面几何形状来快速定位传感器。项目页面:https://suddhu.github.io/midastouch-tactile/
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MResT: Multi-Resolution Sensing for Real-Time Control with Vision-Language Models Lidar Line Selection with Spatially-Aware Shapley Value for Cost-Efficient Depth Completion Safe Robot Learning in Assistive Devices through Neural Network Repair COACH: Cooperative Robot Teaching Learning Goal-Conditioned Policies Offline with Self-Supervised Reward Shaping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1