A general framework for data fusion and outlier removal in distributed sensor networks

Muhammad Abu Bakr, Sukhan Lee
{"title":"A general framework for data fusion and outlier removal in distributed sensor networks","authors":"Muhammad Abu Bakr, Sukhan Lee","doi":"10.1109/MFI.2017.8170412","DOIUrl":null,"url":null,"abstract":"A fundamental issue in sensor fusion is to detect and remove outliers as sensors often produce inconsistent measurements that are difficult to predict and model. The detection and removal of spurious data is paramount to the quality of sensor fusion by avoiding their inclusion in the fusion pool. In this paper, a general framework of data fusion is presented for distributed sensor networks of arbitrary redundancies, where inconsistent data are identified simultaneously within the framework. By the general framework, we mean that it is able to fuse multiple correlated data sources and incorporate linear constraints directly, while detecting and removing outliers without any prior information. The proposed method, referred to here as Covariance Projection (CP) Method, aggregates all the state vectors into a single vector in an extended space. The method then projects the mean and covariance of the aggregated state vectors onto the constraint manifold representing the constraints among state vectors that must be satisfied, including the equality constraint. Based on the distance from the manifold, the proposed method identifies the relative disparity among data sources and assigns confidence measures. The method provides an unbiased and optimal solution in the sense of Minimum Mean Square Error (MMSE) for distributed fusion architectures and is able to deal with correlations and uncertainties among local estimates and/or sensor observations across time. Simulation results are provided to show the effectiveness of the proposed method in identification and removal of inconsistency in distributed sensors system.","PeriodicalId":402371,"journal":{"name":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2017.8170412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A fundamental issue in sensor fusion is to detect and remove outliers as sensors often produce inconsistent measurements that are difficult to predict and model. The detection and removal of spurious data is paramount to the quality of sensor fusion by avoiding their inclusion in the fusion pool. In this paper, a general framework of data fusion is presented for distributed sensor networks of arbitrary redundancies, where inconsistent data are identified simultaneously within the framework. By the general framework, we mean that it is able to fuse multiple correlated data sources and incorporate linear constraints directly, while detecting and removing outliers without any prior information. The proposed method, referred to here as Covariance Projection (CP) Method, aggregates all the state vectors into a single vector in an extended space. The method then projects the mean and covariance of the aggregated state vectors onto the constraint manifold representing the constraints among state vectors that must be satisfied, including the equality constraint. Based on the distance from the manifold, the proposed method identifies the relative disparity among data sources and assigns confidence measures. The method provides an unbiased and optimal solution in the sense of Minimum Mean Square Error (MMSE) for distributed fusion architectures and is able to deal with correlations and uncertainties among local estimates and/or sensor observations across time. Simulation results are provided to show the effectiveness of the proposed method in identification and removal of inconsistency in distributed sensors system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布式传感器网络中数据融合与异常点去除的通用框架
传感器融合的一个基本问题是检测和去除异常值,因为传感器经常产生难以预测和建模的不一致的测量值。检测和去除假数据是保证传感器融合质量的关键,避免假数据被包含在融合池中。本文针对任意冗余的分布式传感器网络,提出了一种通用的数据融合框架,在该框架内可以同时识别不一致的数据。通过一般框架,我们的意思是它能够融合多个相关数据源并直接纳入线性约束,同时在没有任何先验信息的情况下检测和去除异常值。本文提出的方法称为协方差投影(CP)方法,该方法将所有状态向量在扩展空间中聚合为单个向量。然后,该方法将聚合状态向量的均值和协方差投影到约束流形上,该约束流形表示状态向量之间必须满足的约束,包括等式约束。该方法基于与流形的距离,识别数据源之间的相对差异,并分配置信度。该方法在最小均方误差(MMSE)意义上为分布式融合架构提供了无偏和最优解,并且能够处理局部估计和/或传感器观测之间的相关性和不确定性。仿真结果表明了该方法在分布式传感器系统中识别和消除不一致性方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep reinforcement learning algorithms for steering an underactuated ship Data analytics development of FDR (Flight Data Recorder) data for airline maintenance operations Underwater Terrain Navigation Using Standard Sea Charts and Magnetic Field Maps Musculoskeletal model of a pregnant woman considering stretched rectus abdominis and co-contraction muscle activation Compressive sensing based data collection in wireless sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1