Learning to Predict Software Testability

Morteza Zakeri Nasrabadi, S. Parsa
{"title":"Learning to Predict Software Testability","authors":"Morteza Zakeri Nasrabadi, S. Parsa","doi":"10.1109/CSICC52343.2021.9420548","DOIUrl":null,"url":null,"abstract":"Software testability is the propensity of code to reveal its existing faults, particularly during automated testing. Testing success depends on the testability of the program under test. On the other hand, testing success relies on the coverage of the test data provided by a given test data generation algorithm. However, little empirical evidence has been shown to clarify whether and how software testability affects test coverage. In this article, we propose a method to shed light on this subject. Our proposed framework uses the coverage of Software Under Test (SUT), provided by different automatically generated test suites, to build machine learning models, determining the testability of programs based on many source code metrics. The resultant models can predict the code coverage provided by a given test data generation algorithm before running the algorithm, reducing the cost of additional testing. The predicted coverage is used as a concrete proxy to quantify source code testability. Experiments show an acceptable accuracy of 81.94% in measuring and predicting software testability.","PeriodicalId":374593,"journal":{"name":"2021 26th International Computer Conference, Computer Society of Iran (CSICC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 26th International Computer Conference, Computer Society of Iran (CSICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICC52343.2021.9420548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Software testability is the propensity of code to reveal its existing faults, particularly during automated testing. Testing success depends on the testability of the program under test. On the other hand, testing success relies on the coverage of the test data provided by a given test data generation algorithm. However, little empirical evidence has been shown to clarify whether and how software testability affects test coverage. In this article, we propose a method to shed light on this subject. Our proposed framework uses the coverage of Software Under Test (SUT), provided by different automatically generated test suites, to build machine learning models, determining the testability of programs based on many source code metrics. The resultant models can predict the code coverage provided by a given test data generation algorithm before running the algorithm, reducing the cost of additional testing. The predicted coverage is used as a concrete proxy to quantify source code testability. Experiments show an acceptable accuracy of 81.94% in measuring and predicting software testability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习预测软件的可测试性
软件可测试性是代码揭示其现有错误的倾向,特别是在自动化测试期间。测试的成功取决于被测程序的可测试性。另一方面,测试的成功依赖于给定测试数据生成算法所提供的测试数据的覆盖率。然而,很少有经验证据表明软件可测试性是否以及如何影响测试覆盖率。在这篇文章中,我们提出了一种方法来阐明这个问题。我们提出的框架使用由不同自动生成的测试套件提供的测试下软件(SUT)的覆盖范围来构建机器学习模型,根据许多源代码度量确定程序的可测试性。结果模型可以在运行算法之前预测由给定的测试数据生成算法提供的代码覆盖率,从而减少额外测试的成本。预测的覆盖率被用作量化源代码可测试性的具体代理。实验表明,该方法测量和预测软件可测试性的准确度为81.94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transfer Learning for End-to-End ASR to Deal with Low-Resource Problem in Persian Language An SDN-based Firewall for Networks with Varying Security Requirements A Face-Mask Detection Approach based on YOLO Applied for a New Collected Dataset Telegram group recommendation based on users' migration Design of an IoT-based Flood Early Detection System using Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1