Design and Selection of Solar Powered Off-Board Domestic Charging Station for Electric Vehicles

S. Koushik, V. Sandeep
{"title":"Design and Selection of Solar Powered Off-Board Domestic Charging Station for Electric Vehicles","authors":"S. Koushik, V. Sandeep","doi":"10.1109/SeFet48154.2021.9375758","DOIUrl":null,"url":null,"abstract":"This paper illustrates the design and simulation of solar powered off-board electric vehicle (EV) charging station for domestic usage by implementing different converter topologies. A typical DC off-board charger consists of a power source and a DC-DC converter for voltage correction in order to match the required nominal battery voltage at the output. If the source is given from a solar photovoltaic (PV) array, a maximum power point tracker (MPPT) is required to track the maximum power generated by the solar panel and deliver it to the converter input. There are many converter topologies currently being developed and tested to increase the efficiency of the charger. This paper selects the basic and widely used topologies which include a) DC-DC boost converter, b) single ended primary inductance converter (SEPIC) and c) full bridge DC-DC converter with high frequency transformer. These topologies are simulated using Simulink/ Matlab environment and the results are explained suitably.","PeriodicalId":232560,"journal":{"name":"2021 International Conference on Sustainable Energy and Future Electric Transportation (SEFET)","volume":"228 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Sustainable Energy and Future Electric Transportation (SEFET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SeFet48154.2021.9375758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper illustrates the design and simulation of solar powered off-board electric vehicle (EV) charging station for domestic usage by implementing different converter topologies. A typical DC off-board charger consists of a power source and a DC-DC converter for voltage correction in order to match the required nominal battery voltage at the output. If the source is given from a solar photovoltaic (PV) array, a maximum power point tracker (MPPT) is required to track the maximum power generated by the solar panel and deliver it to the converter input. There are many converter topologies currently being developed and tested to increase the efficiency of the charger. This paper selects the basic and widely used topologies which include a) DC-DC boost converter, b) single ended primary inductance converter (SEPIC) and c) full bridge DC-DC converter with high frequency transformer. These topologies are simulated using Simulink/ Matlab environment and the results are explained suitably.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
家用电动汽车太阳能车载充电站的设计与选型
本文通过实现不同的转换器拓扑结构,阐述了家用太阳能电动汽车(EV)充电站的设计与仿真。典型的直流车载充电器由电源和用于电压校正的DC-DC转换器组成,以匹配输出端所需的标称电池电压。如果电源来自太阳能光伏(PV)阵列,则需要一个最大功率点跟踪器(MPPT)来跟踪太阳能电池板产生的最大功率并将其传递给转换器输入。目前有许多转换器拓扑正在开发和测试,以提高充电器的效率。本文选择了常用的基本拓扑,包括a) DC-DC升压变换器,b)单端初级电感变换器(SEPIC)和c)带高频变压器的全桥DC-DC变换器。利用Simulink/ Matlab环境对这些拓扑结构进行了仿真,并对仿真结果进行了适当的说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Retrofication Of ICE Driven Auto-Rickshaw Seamless Transition between Grid-Connected and Islanded Operation Modes for Hybrid PV-BESS Combination used in Single-Phase, Critical Load Applications A Critical Study on Campus Energy Monitoring System and Role of IoT A Novel Switched-Capacitor Based Three-phase MultiLevel Inverter Fed induction motor for Agricultural Applications A New Single-Phase Five-Level Neutral Point Clamped Cascaded Multilevel Inverter for Minimization of Leakage Current in PV Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1