Pliant: Leveraging Approximation to Improve Datacenter Resource Efficiency

Neeraj Kulkarni, Feng Qi, Christina Delimitrou
{"title":"Pliant: Leveraging Approximation to Improve Datacenter Resource Efficiency","authors":"Neeraj Kulkarni, Feng Qi, Christina Delimitrou","doi":"10.1109/HPCA.2019.00035","DOIUrl":null,"url":null,"abstract":"Cloud multi-tenancy is typically constrained to a single interactive service colocated with one or more batch, low-priority services, whose performance can be sacrificed when deemed necessary. Approximate computing applications offer the opportunity to enable tighter colocation among multiple applications whose performance is important. We present Pliant, a lightweight cloud runtime that leverages the ability of approximate computing applications to tolerate some loss in their output quality to boost the utilization of shared servers. During periods of high resource contention, Pliant employs incremental and interference-aware approximation to reduce contention in shared resources, and prevent QoS violations for co-scheduled interactive, latency-critical services. We evaluate Pliant across different interactive and approximate computing applications, and show that it preserves QoS for all co-scheduled workloads, while incurring a 2.1\\% loss in output quality, on average.","PeriodicalId":102050,"journal":{"name":"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2019.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Cloud multi-tenancy is typically constrained to a single interactive service colocated with one or more batch, low-priority services, whose performance can be sacrificed when deemed necessary. Approximate computing applications offer the opportunity to enable tighter colocation among multiple applications whose performance is important. We present Pliant, a lightweight cloud runtime that leverages the ability of approximate computing applications to tolerate some loss in their output quality to boost the utilization of shared servers. During periods of high resource contention, Pliant employs incremental and interference-aware approximation to reduce contention in shared resources, and prevent QoS violations for co-scheduled interactive, latency-critical services. We evaluate Pliant across different interactive and approximate computing applications, and show that it preserves QoS for all co-scheduled workloads, while incurring a 2.1\% loss in output quality, on average.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
柔韧:利用近似提高数据中心资源效率
云多租户通常被限制为与一个或多个批处理、低优先级服务共存的单个交互服务,在必要时可以牺牲其性能。近似计算应用程序提供了在性能很重要的多个应用程序之间实现更紧密的托管的机会。我们介绍了轻量级云运行时Pliant,它利用近似计算应用程序的能力来容忍输出质量的一些损失,从而提高共享服务器的利用率。在高资源争用期间,Pliant采用增量和干扰感知近似来减少共享资源中的争用,并防止共同调度的交互式延迟关键服务违反QoS。我们在不同的交互式和近似计算应用程序中评估了Pliant,并表明它为所有共同调度的工作负载保留了QoS,同时平均导致输出质量损失2.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning at Facebook: Understanding Inference at the Edge Understanding the Future of Energy Efficiency in Multi-Module GPUs POWERT Channels: A Novel Class of Covert CommunicationExploiting Power Management Vulnerabilities The Accelerator Wall: Limits of Chip Specialization Featherlight Reuse-Distance Measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1