{"title":"Large-grain Sn-doped Ge (100) on insulator by aluminum-induced crystallization at low-temperature for flexible electronics","authors":"M. Sasaki, M. Miyao, T. Sadoh","doi":"10.1109/AM-FPD.2016.7543662","DOIUrl":null,"url":null,"abstract":"A low-temperature formation technique of Sn-doped Ge on insulator has been investigated by aluminum-induced crystallization using a-GeSn/Al stacked structures. For a-GeSn films (Sn concentration: 2%), the layer-exchange growth temperature is significantly decreased compared with a-Ge, which enables low temperature growth at 250°C. At such a low temperature, bulk nucleation of GeSn in Al layers is significantly suppressed, and (100)-oriented interface nucleation becomes dominant. On the other hand, growth rate becomes high by Sn-doping effects. As a result, formation of (100)-oriented large-grain (>10 μm) Sn-doped Ge (Sn concentration: 2%) crystals on insulating substrates becomes possible at a low temperature (250°C). This technique will be useful to realize advanced flexible electronics.","PeriodicalId":422453,"journal":{"name":"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AM-FPD.2016.7543662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A low-temperature formation technique of Sn-doped Ge on insulator has been investigated by aluminum-induced crystallization using a-GeSn/Al stacked structures. For a-GeSn films (Sn concentration: 2%), the layer-exchange growth temperature is significantly decreased compared with a-Ge, which enables low temperature growth at 250°C. At such a low temperature, bulk nucleation of GeSn in Al layers is significantly suppressed, and (100)-oriented interface nucleation becomes dominant. On the other hand, growth rate becomes high by Sn-doping effects. As a result, formation of (100)-oriented large-grain (>10 μm) Sn-doped Ge (Sn concentration: 2%) crystals on insulating substrates becomes possible at a low temperature (250°C). This technique will be useful to realize advanced flexible electronics.