Fractional Brownian Bridge Model for Alzheimer Disease Detection from EEG Signal

Martin Dlask, J. Kukal, P. Sovka
{"title":"Fractional Brownian Bridge Model for Alzheimer Disease Detection from EEG Signal","authors":"Martin Dlask, J. Kukal, P. Sovka","doi":"10.1109/CSPIS.2018.8642720","DOIUrl":null,"url":null,"abstract":"A number of biomedical data can be investigated using methods of fractal geometry. A measurement of their nonlinear character and chaoticity can be used for subsequent data classification or irregularity detection. In this paper, we introduce the method of the fractional Brownian bridge for the Hurst exponent estimation from a signal and apply it to the electroencephalogram (EEG) data. The technique is used to detect the early stages of Alzheimer’s disease, exhibiting significant performance when compared with control patients. The measures of variability where the most significant changes occur together with the recommended EEG channels are presented in the paper.","PeriodicalId":251356,"journal":{"name":"2018 International Conference on Signal Processing and Information Security (ICSPIS)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Signal Processing and Information Security (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPIS.2018.8642720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A number of biomedical data can be investigated using methods of fractal geometry. A measurement of their nonlinear character and chaoticity can be used for subsequent data classification or irregularity detection. In this paper, we introduce the method of the fractional Brownian bridge for the Hurst exponent estimation from a signal and apply it to the electroencephalogram (EEG) data. The technique is used to detect the early stages of Alzheimer’s disease, exhibiting significant performance when compared with control patients. The measures of variability where the most significant changes occur together with the recommended EEG channels are presented in the paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分数阶布朗桥模型的脑电信号阿尔茨海默病检测
许多生物医学数据可以用分形几何的方法来研究。测量其非线性特性和混沌性可用于后续的数据分类或不规则检测。本文介绍了用分数布朗桥法对信号进行赫斯特指数估计的方法,并将其应用于脑电图数据。该技术用于检测阿尔茨海默病的早期阶段,与对照组患者相比,表现出显著的表现。变异的措施,其中最显著的变化发生与建议的脑电图通道一起提出了在论文中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementing a performant security control for Industrial Ethernet Hindrances in the Fitness Landscape and Remedies to Achieve Optimization Low Complexity Receivers for Massive MIMO Cloud Radio Access Systems Using Virtual Agent for Facilitating Online Questionnaire Surveys Autonomous Building Detection Using Region Properties and PCA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1