T2S-Tensor: Productively Generating High-Performance Spatial Hardware for Dense Tensor Computations

Nitish Srivastava, Hongbo Rong, Prithayan Barua, Guanyu Feng, Huanqi Cao, Zhiru Zhang, D. Albonesi, Vivek Sarkar, Wenguang Chen, Paul Petersen, Geoff N. Lowney, A. Herr, C. Hughes, T. Mattson, P. Dubey
{"title":"T2S-Tensor: Productively Generating High-Performance Spatial Hardware for Dense Tensor Computations","authors":"Nitish Srivastava, Hongbo Rong, Prithayan Barua, Guanyu Feng, Huanqi Cao, Zhiru Zhang, D. Albonesi, Vivek Sarkar, Wenguang Chen, Paul Petersen, Geoff N. Lowney, A. Herr, C. Hughes, T. Mattson, P. Dubey","doi":"10.1109/FCCM.2019.00033","DOIUrl":null,"url":null,"abstract":"We present a language and compilation framework for productively generating high-performance systolic arrays for dense tensor kernels on spatial architectures, including FPGAs and CGRAs. It decouples a functional specification from a spatial mapping, allowing programmers to quickly explore various spatial optimizations for the same function. The actual implementation of these optimizations is left to a compiler. Thus, productivity and performance are achieved at the same time. We used this framework to implement several important dense tensor kernels. We implemented dense matrix multiply for an Arria-10 FPGA and a research CGRA, achieving 88% and 92% of the performance of manually written, and highly optimized expert (ninja\") implementations in just 3% of their engineering time. Three other tensor kernels, including MTTKRP, TTM and TTMc, were also implemented with high performance and low design effort, and for the first time on spatial architectures.\"","PeriodicalId":116955,"journal":{"name":"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2019.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

We present a language and compilation framework for productively generating high-performance systolic arrays for dense tensor kernels on spatial architectures, including FPGAs and CGRAs. It decouples a functional specification from a spatial mapping, allowing programmers to quickly explore various spatial optimizations for the same function. The actual implementation of these optimizations is left to a compiler. Thus, productivity and performance are achieved at the same time. We used this framework to implement several important dense tensor kernels. We implemented dense matrix multiply for an Arria-10 FPGA and a research CGRA, achieving 88% and 92% of the performance of manually written, and highly optimized expert (ninja") implementations in just 3% of their engineering time. Three other tensor kernels, including MTTKRP, TTM and TTMc, were also implemented with high performance and low design effort, and for the first time on spatial architectures."
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
T2S-Tensor:高效生成用于密集张量计算的高性能空间硬件
我们提出了一种语言和编译框架,用于在空间架构(包括fpga和CGRAs)上高效地为密集张量核生成高性能收缩阵列。它将功能规范与空间映射解耦,允许程序员快速探索相同函数的各种空间优化。这些优化的实际实现留给了编译器。因此,生产力和性能是同时实现的。我们使用这个框架实现了几个重要的密集张量核。我们在Arria-10 FPGA和研究CGRA上实现了密集矩阵乘法,在仅3%的工程时间内实现了手工编写和高度优化的专家(ninja)实现的88%和92%的性能。另外三个张量核,包括MTTKRP, TTM和TTMc,也以高性能和低设计工作量实现,并且首次在空间架构上实现。”
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware Acceleration of Long Read Pairwise Overlapping in Genome Sequencing: A Race Between FPGA and GPU MEG: A RISCV-Based System Simulation Infrastructure for Exploring Memory Optimization Using FPGAs and Hybrid Memory Cube π-BA: Bundle Adjustment Acceleration on Embedded FPGAs with Co-observation Optimization Safe Task Interruption for FPGAs Analyzing the Energy-Efficiency of Vision Kernels on Embedded CPU, GPU and FPGA Platforms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1