The What's Next Intermittent Computing Architecture

K. Ganesan, Joshua San Miguel, Natalie D. Enright Jerger
{"title":"The What's Next Intermittent Computing Architecture","authors":"K. Ganesan, Joshua San Miguel, Natalie D. Enright Jerger","doi":"10.1109/HPCA.2019.00039","DOIUrl":null,"url":null,"abstract":"Energy-harvesting devices operate under extremely tight energy constraints. Ensuring forward progress under frequent power outages is paramount. Applications running on these devices are typically amenable to approximation, offering new opportunities to provide better forward progress between power outages. We propose What’s Next (WN), a set of anytime approximation techniques for energy harvesting: subword pipelining, subword vectorization and skim points. Skim points fundamentally decouple the checkpoint location from the recovery location upon a power outage. Ultimately, WN transforms processing on energy-harvesting devices from all-or-nothing to as-is computing. We enable an approximate (yet acceptable) result sooner and proceed to the next task when power is restored rather than resume processing from a checkpoint to yield the perfect output. WN yields speedups of 2.26x and 3.02x on non-volatile and checkpoint-based volatile processors, while still producing high-quality outputs. Keywords-energy harvesting; intermittent computing; approximate computing;","PeriodicalId":102050,"journal":{"name":"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2019.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Energy-harvesting devices operate under extremely tight energy constraints. Ensuring forward progress under frequent power outages is paramount. Applications running on these devices are typically amenable to approximation, offering new opportunities to provide better forward progress between power outages. We propose What’s Next (WN), a set of anytime approximation techniques for energy harvesting: subword pipelining, subword vectorization and skim points. Skim points fundamentally decouple the checkpoint location from the recovery location upon a power outage. Ultimately, WN transforms processing on energy-harvesting devices from all-or-nothing to as-is computing. We enable an approximate (yet acceptable) result sooner and proceed to the next task when power is restored rather than resume processing from a checkpoint to yield the perfect output. WN yields speedups of 2.26x and 3.02x on non-volatile and checkpoint-based volatile processors, while still producing high-quality outputs. Keywords-energy harvesting; intermittent computing; approximate computing;
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
下一个间歇性计算架构是什么
能量收集装置在极其严格的能量限制下运行。确保在频繁停电的情况下取得进展是至关重要的。在这些设备上运行的应用程序通常可以进行近似处理,从而提供了在停电期间提供更好的转发进度的新机会。我们提出了下一步(WN),一套用于能量收集的随时逼近技术:子词管道,子词矢量化和略读点。撇点从根本上将检查点位置与停电时的恢复位置分离开来。最终,WN将能量收集设备上的处理从全有或全无转变为原状计算。我们更快地启用一个近似(但可接受)的结果,并在电源恢复后继续执行下一个任务,而不是从检查点恢复处理以产生完美的输出。WN在非易失性和基于检查点的易失性处理器上的加速分别为2.26倍和3.02倍,同时仍能产生高质量的输出。Keywords-energy收获;断断续续的计算;近似计算;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning at Facebook: Understanding Inference at the Edge Understanding the Future of Energy Efficiency in Multi-Module GPUs POWERT Channels: A Novel Class of Covert CommunicationExploiting Power Management Vulnerabilities The Accelerator Wall: Limits of Chip Specialization Featherlight Reuse-Distance Measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1