Electronic circuit fault diagnosis methods based on improved Support Vector Machines

Zhiming Yang, Yang Yu, Gang Wang
{"title":"Electronic circuit fault diagnosis methods based on improved Support Vector Machines","authors":"Zhiming Yang, Yang Yu, Gang Wang","doi":"10.1109/I2MTC.2013.6555452","DOIUrl":null,"url":null,"abstract":"In nowadays, fault diagnosis method for analog circuit based on support vector machines, has become a hot topic in research field of fault diagnosis. However, in practical application of this method, the imbalanced problem occurred in fault sample dataset has greatly influenced its effectiveness. To remedy this problem, this paper proposed an improved Support Vector Machines method based on biased empirical feature mapping. In the new method, biased discriminant analysis was applied in empirical feature space, to make all normal samples far away from center of fault samples, so that the overall fault diagnosis ability can be improved. Through theoretical analysis and empirical study on actual electronic circuit fault diagnosis problem, we show that our method augments the diagnosis accuracy rate effectively.","PeriodicalId":432388,"journal":{"name":"2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2013.6555452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In nowadays, fault diagnosis method for analog circuit based on support vector machines, has become a hot topic in research field of fault diagnosis. However, in practical application of this method, the imbalanced problem occurred in fault sample dataset has greatly influenced its effectiveness. To remedy this problem, this paper proposed an improved Support Vector Machines method based on biased empirical feature mapping. In the new method, biased discriminant analysis was applied in empirical feature space, to make all normal samples far away from center of fault samples, so that the overall fault diagnosis ability can be improved. Through theoretical analysis and empirical study on actual electronic circuit fault diagnosis problem, we show that our method augments the diagnosis accuracy rate effectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进支持向量机的电子电路故障诊断方法
目前,基于支持向量机的模拟电路故障诊断方法已成为故障诊断领域的研究热点。然而,在实际应用中,故障样本数据集的不平衡问题极大地影响了该方法的有效性。为了解决这一问题,本文提出了一种改进的基于有偏经验特征映射的支持向量机方法。该方法在经验特征空间中应用有偏判别分析,使所有正常样本远离故障样本中心,从而提高了整体故障诊断能力。通过对实际电子电路故障诊断问题的理论分析和实证研究,表明该方法有效地提高了诊断准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Face based recognition algorithms: The use of uncertainty in the classification Estimation and analysis of communication service time in a real-time wireless industrial network Analytic redundance applied to the relay-connected instrumentation of electric power distribution substations Hierarchical sparse learning for load forecasting in cyber-physical energy systems Microwave conductance of semicontinuous metallic films from coplanar waveguide scattering parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1