{"title":"Protein interaction prediction for mouse pdz domains using dipeptide composition features","authors":"Songyot Nakariyakul, Zhiping Liu, Luonan Chen","doi":"10.1109/ISB.2011.6033143","DOIUrl":null,"url":null,"abstract":"The PDZ domain is one of the largest families of protein domains that are involved in targeting and routing specific proteins in signaling pathways. PDZ domains mediate protein-protein interactions by binding the C-terminal peptides of their target proteins. Using the dipeptide feature encoding, we develop a PDZ domain interaction predictor using a support vector machine that achieves a high accuracy rate of 82.49%. Since most of the dipeptide compositions are redundant and irrelevant, we propose a new hybrid feature selection technique to select only a subset of these compositions that are useful for interaction prediction. Our experimental results show that only approximately 25% of dipeptide features are needed and that our method increases the accuracy by 3%. The selected dipeptide features are analyzed and shown to have important roles on specificity pattern of PDZ domains.","PeriodicalId":355056,"journal":{"name":"2011 IEEE International Conference on Systems Biology (ISB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Systems Biology (ISB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISB.2011.6033143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The PDZ domain is one of the largest families of protein domains that are involved in targeting and routing specific proteins in signaling pathways. PDZ domains mediate protein-protein interactions by binding the C-terminal peptides of their target proteins. Using the dipeptide feature encoding, we develop a PDZ domain interaction predictor using a support vector machine that achieves a high accuracy rate of 82.49%. Since most of the dipeptide compositions are redundant and irrelevant, we propose a new hybrid feature selection technique to select only a subset of these compositions that are useful for interaction prediction. Our experimental results show that only approximately 25% of dipeptide features are needed and that our method increases the accuracy by 3%. The selected dipeptide features are analyzed and shown to have important roles on specificity pattern of PDZ domains.