Interpretable Self-Aware Neural Networks for Robust Trajectory Prediction

Masha Itkina, Mykel J. Kochenderfer
{"title":"Interpretable Self-Aware Neural Networks for Robust Trajectory Prediction","authors":"Masha Itkina, Mykel J. Kochenderfer","doi":"10.48550/arXiv.2211.08701","DOIUrl":null,"url":null,"abstract":"Although neural networks have seen tremendous success as predictive models in a variety of domains, they can be overly confident in their predictions on out-of-distribution (OOD) data. To be viable for safety-critical applications, like autonomous vehicles, neural networks must accurately estimate their epistemic or model uncertainty, achieving a level of system self-awareness. Techniques for epistemic uncertainty quantification often require OOD data during training or multiple neural network forward passes during inference. These approaches may not be suitable for real-time performance on high-dimensional inputs. Furthermore, existing methods lack interpretability of the estimated uncertainty, which limits their usefulness both to engineers for further system development and to downstream modules in the autonomy stack. We propose the use of evidential deep learning to estimate the epistemic uncertainty over a low-dimensional, interpretable latent space in a trajectory prediction setting. We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among the semantic concepts: past agent behavior, road structure, and social context. We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines. Our code is available at: https://github.com/sisl/InterpretableSelfAwarePrediction.","PeriodicalId":273870,"journal":{"name":"Conference on Robot Learning","volume":"61 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Robot Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.08701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Although neural networks have seen tremendous success as predictive models in a variety of domains, they can be overly confident in their predictions on out-of-distribution (OOD) data. To be viable for safety-critical applications, like autonomous vehicles, neural networks must accurately estimate their epistemic or model uncertainty, achieving a level of system self-awareness. Techniques for epistemic uncertainty quantification often require OOD data during training or multiple neural network forward passes during inference. These approaches may not be suitable for real-time performance on high-dimensional inputs. Furthermore, existing methods lack interpretability of the estimated uncertainty, which limits their usefulness both to engineers for further system development and to downstream modules in the autonomy stack. We propose the use of evidential deep learning to estimate the epistemic uncertainty over a low-dimensional, interpretable latent space in a trajectory prediction setting. We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among the semantic concepts: past agent behavior, road structure, and social context. We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines. Our code is available at: https://github.com/sisl/InterpretableSelfAwarePrediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鲁棒轨迹预测的可解释自我意识神经网络
尽管神经网络作为预测模型在许多领域取得了巨大的成功,但它们在预测分布外(OOD)数据时可能过于自信。为了使自动驾驶汽车等安全关键应用可行,神经网络必须准确地估计其认知或模型的不确定性,从而达到一定程度的系统自我意识。认知不确定性量化技术通常在训练期间需要OOD数据或在推理期间需要多个神经网络前向传递。这些方法可能不适合高维输入的实时性能。此外,现有方法缺乏对估计不确定性的可解释性,这限制了它们对工程师进一步系统开发和自治堆栈中的下游模块的有用性。我们建议使用证据深度学习来估计轨迹预测设置中低维,可解释潜在空间的认知不确定性。我们引入了一个可解释的轨迹预测范式,将不确定性分布在语义概念中:过去的代理行为、道路结构和社会背景。我们在真实的自动驾驶数据上验证了我们的方法,证明了比最先进的基线更优越的性能。我们的代码可在:https://github.com/sisl/InterpretableSelfAwarePrediction。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MResT: Multi-Resolution Sensing for Real-Time Control with Vision-Language Models Lidar Line Selection with Spatially-Aware Shapley Value for Cost-Efficient Depth Completion Safe Robot Learning in Assistive Devices through Neural Network Repair COACH: Cooperative Robot Teaching Learning Goal-Conditioned Policies Offline with Self-Supervised Reward Shaping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1