Dynamical threshold for a feature detector neural model

E. Chiarantoni, G. Fornarelli, F. Vacca, S. Vergura
{"title":"Dynamical threshold for a feature detector neural model","authors":"E. Chiarantoni, G. Fornarelli, F. Vacca, S. Vergura","doi":"10.1109/IJCNN.2001.938986","DOIUrl":null,"url":null,"abstract":"In this paper a model of neural unit that take into account the effect of mean time decay output (\"stress\") observed in the Hodgkin-Huxley model is presented. A simplified version of the stress effect is implemented in a static neuron element by means of a dynamical threshold. A rule to vary the threshold adopting local information is then presented and the effects of this law over the learning are examined in the class of standard competitive learning rule. The properties of stability of this model are examined and it is shown that the proposed unit, under appropriate hypothesis, is able to find autonomously (i.e. without requiring any interaction with other units) a local maximum of density in the input data set space (feature).","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.938986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper a model of neural unit that take into account the effect of mean time decay output ("stress") observed in the Hodgkin-Huxley model is presented. A simplified version of the stress effect is implemented in a static neuron element by means of a dynamical threshold. A rule to vary the threshold adopting local information is then presented and the effects of this law over the learning are examined in the class of standard competitive learning rule. The properties of stability of this model are examined and it is shown that the proposed unit, under appropriate hypothesis, is able to find autonomously (i.e. without requiring any interaction with other units) a local maximum of density in the input data set space (feature).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
特征检测器神经模型的动态阈值
本文提出了一种考虑霍奇金-赫胥黎模型中所观察到的平均时间衰减输出(“应力”)影响的神经单元模型。应力效应的简化版本通过动态阈值在静态神经元单元中实现。然后提出了一种采用局部信息改变阈值的规则,并在标准竞争学习规则中检验了该规则对学习的影响。对该模型的稳定性进行了检验,结果表明,在适当的假设下,所提出的单元能够自主地(即不需要与其他单元进行任何交互)在输入数据集空间(特征)中找到密度的局部最大值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaotic analog associative memory Texture based segmentation of cell images using neural networks and mathematical morphology Center reduction algorithm for the modified probabilistic neural network equalizer Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels Sliding mode control of nonlinear systems using Gaussian radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1