Gabo: Gene Analysis Bitstring Optimization

Jonatan Gómez, Elizabeth León Guzman
{"title":"Gabo: Gene Analysis Bitstring Optimization","authors":"Jonatan Gómez, Elizabeth León Guzman","doi":"10.1109/CEC55065.2022.9870237","DOIUrl":null,"url":null,"abstract":"This paper analyzes bitstring functions, character-izes genes according to their contribution to the genome's fitness, and proposes an optimization algorithm (G ABO) that uses this characterization for directing the optimization process. We define a gene's contribution as the difference between the genome's fitness when the gene takes a value of 1 and its fitness when the gene takes a value of 0. We characterize a gene as intron-like if it does not contribute to the genome's fitness (zero difference) and as separable-like if its contribution to the fitness of both the genome and genome's complement is the same. Gabo divides genes into two groups coding-like and intron-like genes. Then it searches for an optimal solution by reducing intron-like genes (IOSA) and analyzing coding-like genes (COSA). G Aborepeats these two steps while there are intron-like genes, not all genes are separable-like, and function evaluations are available. We test the performance of Gabo on well-known binary-encoding functions and a function that we define as the mix of them. Our results indicate that G Aboproduces the optimal or near to the optimal solution on the tested functions expending a reduced number of function evaluations and outperforming well-established optimization algorithms.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"364 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper analyzes bitstring functions, character-izes genes according to their contribution to the genome's fitness, and proposes an optimization algorithm (G ABO) that uses this characterization for directing the optimization process. We define a gene's contribution as the difference between the genome's fitness when the gene takes a value of 1 and its fitness when the gene takes a value of 0. We characterize a gene as intron-like if it does not contribute to the genome's fitness (zero difference) and as separable-like if its contribution to the fitness of both the genome and genome's complement is the same. Gabo divides genes into two groups coding-like and intron-like genes. Then it searches for an optimal solution by reducing intron-like genes (IOSA) and analyzing coding-like genes (COSA). G Aborepeats these two steps while there are intron-like genes, not all genes are separable-like, and function evaluations are available. We test the performance of Gabo on well-known binary-encoding functions and a function that we define as the mix of them. Our results indicate that G Aboproduces the optimal or near to the optimal solution on the tested functions expending a reduced number of function evaluations and outperforming well-established optimization algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gabo:基因分析位串优化
本文分析了位串函数,根据基因对基因组适应度的贡献来描述基因的特征,并提出了一种利用这种特征来指导优化过程的优化算法(G ABO)。我们将基因的贡献定义为当基因取值为1时,基因组的适应度与基因取值为0时的适应度之差。如果一个基因对基因组的适应度没有贡献(零差异),我们将其描述为类内含子;如果它对基因组和基因组补体的适应度的贡献相同,我们将其描述为类可分离基因。Gabo将基因分为编码样基因和内含子样基因两类。然后通过减少内含子样基因(IOSA)和分析编码样基因(COSA)来寻找最优解。G重复这两个步骤,虽然存在内含子样基因,但并非所有基因都是可分离的,并且可以进行功能评估。我们测试了Gabo在众所周知的二进制编码函数和一个我们定义为它们混合的函数上的性能。我们的结果表明,G abod在测试函数上产生最优或接近最优解,减少了函数评估的次数,并且优于已建立的优化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of Single-objective Landscapes on Multi-objective Optimization Cooperative Multi-objective Topology Optimization Using Clustering and Metamodeling Global and Local Area Coverage Path Planner for a Reconfigurable Robot A New Integer Linear Program and A Grouping Genetic Algorithm with Controlled Gene Transmission for Joint Order Batching and Picking Routing Problem Test Case Prioritization and Reduction Using Hybrid Quantum-behaved Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1