A. Nannarelli, M. Re, G. Cardarilli, L. Nunzio, M. Brunella, R. Fazzolari, F. Carbonari
{"title":"Robust throughput boosting for low latency dynamic partial reconfiguration","authors":"A. Nannarelli, M. Re, G. Cardarilli, L. Nunzio, M. Brunella, R. Fazzolari, F. Carbonari","doi":"10.1109/SOCC.2017.8226013","DOIUrl":null,"url":null,"abstract":"Reducing the configuration time of portions of an FPGA at run time is crucial in contemporary FPGA-based accelerators. In this work, we propose a method to increase the throughput for FPGA dynamic partial reconfiguration by using standard IP blocks. The throughput is increased by over-clocking the configuration bitstream circuitry beyond the limits stated in the specifications of these standard blocks. The experimental results show that the most power efficient implementation can reach a throughput of about 780 MB/s, corresponding to a configuration latency of about 670 micro-seconds for bitstreams of 1.2 MB. We also investigate alternatives to boost the reconfiguration throughput and sketch a methodology to achieve the most power efficient implementation of FPGA-based accelerators.","PeriodicalId":366264,"journal":{"name":"2017 30th IEEE International System-on-Chip Conference (SOCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 30th IEEE International System-on-Chip Conference (SOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC.2017.8226013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Reducing the configuration time of portions of an FPGA at run time is crucial in contemporary FPGA-based accelerators. In this work, we propose a method to increase the throughput for FPGA dynamic partial reconfiguration by using standard IP blocks. The throughput is increased by over-clocking the configuration bitstream circuitry beyond the limits stated in the specifications of these standard blocks. The experimental results show that the most power efficient implementation can reach a throughput of about 780 MB/s, corresponding to a configuration latency of about 670 micro-seconds for bitstreams of 1.2 MB. We also investigate alternatives to boost the reconfiguration throughput and sketch a methodology to achieve the most power efficient implementation of FPGA-based accelerators.