Characterisation of Unclamped Inductive Switching in SiC Cascode JFETs

N. Agbo, J. Ortiz-Gonzalez, R. Wu, O. Alatise
{"title":"Characterisation of Unclamped Inductive Switching in SiC Cascode JFETs","authors":"N. Agbo, J. Ortiz-Gonzalez, R. Wu, O. Alatise","doi":"10.1049/icp.2021.1114","DOIUrl":null,"url":null,"abstract":"SiC cascode devices combine the gate input characteristics of a low voltage silicon MOSFET with the high voltage performance of a SiC JFET. Hence, SiC cascode JFETs avoid the challenges of reduced gate oxide reliability in SiC MOSFETs. SiC cascode JFETs show superior switching performance compared to SiC planar and trench MOSFETs in the same voltage rating. Avalanche ruggedness under unclamped inductive switching is an important robustness metric since it measures how well the power device can sustain power shocks from anomalous operation. In this paper, the avalanche ruggedness of SiC cascode JFETs is presented. Due to the recent commercial availability of SiC cascode JFETs, the avalanche ruggedness of these devices has not been analysed in comparison with contemporary SiC MOSFETs. Some interesting characteristics regarding the maximum energy the device can dissipate without electrothermal failure at higher temperatures are presented. In standard MOSFETs, the probability of latching the parasitic BJT during avalanche mode conduction increases with temperature, hence, avalanche ruggedness reduces at higher junction temperatures. However, in the cascode JFET, the measurements of avalanche ruggedness at high temperatures show some non-linearity due to interactions between the low voltage MOSFET and the SiC JFET. The embedded gate resistance of the SiC JFET plays a crucial role during avalanche mode conduction. Finite element simulations show that the interaction between the JFET and the low voltage MOSFET plays a critical role in UIS operation and is responsible for this observation.","PeriodicalId":188371,"journal":{"name":"The 10th International Conference on Power Electronics, Machines and Drives (PEMD 2020)","volume":"2020 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 10th International Conference on Power Electronics, Machines and Drives (PEMD 2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/icp.2021.1114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

SiC cascode devices combine the gate input characteristics of a low voltage silicon MOSFET with the high voltage performance of a SiC JFET. Hence, SiC cascode JFETs avoid the challenges of reduced gate oxide reliability in SiC MOSFETs. SiC cascode JFETs show superior switching performance compared to SiC planar and trench MOSFETs in the same voltage rating. Avalanche ruggedness under unclamped inductive switching is an important robustness metric since it measures how well the power device can sustain power shocks from anomalous operation. In this paper, the avalanche ruggedness of SiC cascode JFETs is presented. Due to the recent commercial availability of SiC cascode JFETs, the avalanche ruggedness of these devices has not been analysed in comparison with contemporary SiC MOSFETs. Some interesting characteristics regarding the maximum energy the device can dissipate without electrothermal failure at higher temperatures are presented. In standard MOSFETs, the probability of latching the parasitic BJT during avalanche mode conduction increases with temperature, hence, avalanche ruggedness reduces at higher junction temperatures. However, in the cascode JFET, the measurements of avalanche ruggedness at high temperatures show some non-linearity due to interactions between the low voltage MOSFET and the SiC JFET. The embedded gate resistance of the SiC JFET plays a crucial role during avalanche mode conduction. Finite element simulations show that the interaction between the JFET and the low voltage MOSFET plays a critical role in UIS operation and is responsible for this observation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SiC级联码jfet非箝位电感开关特性研究
SiC级联器件结合了低压硅MOSFET的栅极输入特性和SiC JFET的高压性能。因此,SiC级联jfet避免了SiC mosfet中栅极氧化物可靠性降低的挑战。在相同的电压额定值下,SiC级联码jfet的开关性能优于SiC平面mosfet和沟槽mosfet。非钳位电感开关下的雪崩稳健性是一项重要的稳健性指标,因为它衡量了功率器件在异常操作下承受功率冲击的能力。本文介绍了碳化硅级联晶体管的雪崩耐用性。由于最近SiC级联jfet的商业可用性,这些器件的雪崩坚固性尚未与当代SiC mosfet进行比较分析。一些有趣的特性,关于该装置可以耗散的最大能量,没有电热失效,在较高的温度提出。在标准mosfet中,雪崩模式传导期间寄生BJT锁存的概率随着温度的升高而增加,因此,在较高的结温下,雪崩坚固性降低。然而,在级联码JFET中,由于低压MOSFET和SiC JFET之间的相互作用,在高温下雪崩坚固性的测量显示出一些非线性。在雪崩模式传导过程中,碳化硅场效应管的内嵌栅极电阻起着至关重要的作用。有限元模拟表明,JFET和低压MOSFET之间的相互作用在UIS操作中起着关键作用,并负责这一观察。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A NEW FOUR-QUADRANT INVERTER BASED ON DUAL-WINDING ISOLATED CUK CONVERTERS FOR RAILWAY AND RENEWABLE ENERGY APPLICATIONS PERMANENT MAGNET SYNCHRONOUS MACHINE TEMPERATURE ESTIMATION USING LOW-ORDER LUMPED-PARAMETER THERMAL NETWORK WITH EXTENDED IRON LOSS MODEL THERMAL DC TEST AND ANALYSIS OF A STATOR MADE WITH RESIN TRICKLE IMPREGNATION OPTIMISATION OF THE GATE VOLTAGE IN SiC MOSFETS: EFFICIENCY VS RELIABILITY AN EXPERIMENTAL COMPARISON OF THERMAL MODELLING TECHNIQUES FOR IGBT MODULES IN ELECTRICAL DRIVETRAINS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1